Optimal. Leaf size=30 \[ \log \left (1-e^{4+2 e^{x \left (1+i \pi +\log \left (-1+e^2\right )\right )^2}}\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.97, antiderivative size = 32, normalized size of antiderivative = 1.07, number of steps used = 4, number of rules used = 4, integrand size = 151, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.026, Rules used = {12, 2282, 2246, 31} \begin {gather*} \log \left (1-\exp \left (4+2 e^{-x \left (\pi -i \left (1+\log \left (e^2-1\right )\right )\right )^2}\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 31
Rule 2246
Rule 2282
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=-\left (\left (2 \left (\pi -i \left (1+\log \left (-1+e^2\right )\right )\right )^2\right ) \int \frac {\exp \left (4+2 \exp \left (x+2 x \left (i \pi +\log \left (-1+e^2\right )\right )+x \left (i \pi +\log \left (-1+e^2\right )\right )^2\right )+x+2 x \left (i \pi +\log \left (-1+e^2\right )\right )+x \left (i \pi +\log \left (-1+e^2\right )\right )^2\right )}{-1+\exp \left (4+2 \exp \left (x+2 x \left (i \pi +\log \left (-1+e^2\right )\right )+x \left (i \pi +\log \left (-1+e^2\right )\right )^2\right )\right )} \, dx\right )\\ &=2 \operatorname {Subst}\left (\int \frac {e^{4+2 x}}{-1+e^{4+2 x}} \, dx,x,\exp \left (x \left (1+2 \left (i \pi +\log \left (-1+e^2\right )\right )+\left (i \pi +\log \left (-1+e^2\right )\right )^2\right )\right )\right )\\ &=\operatorname {Subst}\left (\int \frac {1}{-1+x} \, dx,x,\exp \left (4+2 \exp \left (x \left (1+2 \left (i \pi +\log \left (-1+e^2\right )\right )+\left (i \pi +\log \left (-1+e^2\right )\right )^2\right )\right )\right )\right )\\ &=\log \left (1-\exp \left (4+2 \exp \left (x \left (1+2 \left (i \pi +\log \left (-1+e^2\right )\right )+\left (i \pi +\log \left (-1+e^2\right )\right )^2\right )\right )\right )\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.22, size = 32, normalized size = 1.07 \begin {gather*} \log \left (1-e^{4+2 e^{-x \left (\pi -i \left (1+\log \left (-1+e^2\right )\right )\right )^2}}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.72, size = 105, normalized size = 3.50 \begin {gather*} -x \log \left (-e^{2} + 1\right )^{2} - 2 \, x \log \left (-e^{2} + 1\right ) - x + \log \left (e^{\left (x \log \left (-e^{2} + 1\right )^{2} + 2 \, x \log \left (-e^{2} + 1\right ) + x + 2 \, e^{\left (x \log \left (-e^{2} + 1\right )^{2} + 2 \, x \log \left (-e^{2} + 1\right ) + x\right )} + 4\right )} - e^{\left (x \log \left (-e^{2} + 1\right )^{2} + 2 \, x \log \left (-e^{2} + 1\right ) + x\right )}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.95, size = 32, normalized size = 1.07 \begin {gather*} \log \left (e^{\left (2 \, e^{\left (x \log \left (-e^{2} + 1\right )^{2} + 2 \, x \log \left (-e^{2} + 1\right ) + x\right )} + 4\right )} - 1\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.28, size = 62, normalized size = 2.07
method | result | size |
derivativedivides | \(\ln \left ({\mathrm e}^{{\mathrm e}^{x \ln \left (1-{\mathrm e}^{2}\right )^{2}+2 x \ln \left (1-{\mathrm e}^{2}\right )+x}+2}-1\right )+\ln \left ({\mathrm e}^{{\mathrm e}^{x \ln \left (1-{\mathrm e}^{2}\right )^{2}+2 x \ln \left (1-{\mathrm e}^{2}\right )+x}+2}+1\right )\) | \(62\) |
norman | \(\ln \left ({\mathrm e}^{{\mathrm e}^{x \ln \left (1-{\mathrm e}^{2}\right )^{2}+2 x \ln \left (1-{\mathrm e}^{2}\right )+x}+2}-1\right )+\ln \left ({\mathrm e}^{{\mathrm e}^{x \ln \left (1-{\mathrm e}^{2}\right )^{2}+2 x \ln \left (1-{\mathrm e}^{2}\right )+x}+2}+1\right )\) | \(62\) |
default | \(\frac {\left (2 \ln \left (1-{\mathrm e}^{2}\right )^{2}+4 \ln \left (1-{\mathrm e}^{2}\right )+2\right ) \left (\frac {\ln \left ({\mathrm e}^{{\mathrm e}^{x \ln \left (1-{\mathrm e}^{2}\right )^{2}+2 x \ln \left (1-{\mathrm e}^{2}\right )+x}+2}-1\right )}{2}+\frac {\ln \left ({\mathrm e}^{{\mathrm e}^{x \ln \left (1-{\mathrm e}^{2}\right )^{2}+2 x \ln \left (1-{\mathrm e}^{2}\right )+x}+2}+1\right )}{2}\right )}{\ln \left (1-{\mathrm e}^{2}\right )^{2}+2 \ln \left (1-{\mathrm e}^{2}\right )+1}\) | \(111\) |
risch | \(\frac {\left (2 \ln \left (1-{\mathrm e}^{2}\right )^{2}+4 \ln \left (1-{\mathrm e}^{2}\right )+2\right ) \left (1-{\mathrm e}^{2}\right )^{2 x} {\mathrm e}^{x \left (\ln \left (1-{\mathrm e}^{2}\right )^{2}+1\right )}}{\ln \left (1-{\mathrm e}^{2}\right )^{2}+2 \ln \left (1-{\mathrm e}^{2}\right )+1}-\frac {2 \ln \left (1-{\mathrm e}^{2}\right )^{2} \left (1-{\mathrm e}^{2}\right )^{2 x} {\mathrm e}^{x \left (\ln \left (1-{\mathrm e}^{2}\right )^{2}+1\right )}}{\ln \left (1-{\mathrm e}^{2}\right )^{2}+2 \ln \left (1-{\mathrm e}^{2}\right )+1}-\frac {4 \ln \left (1-{\mathrm e}^{2}\right ) \left (1-{\mathrm e}^{2}\right )^{2 x} {\mathrm e}^{x \left (\ln \left (1-{\mathrm e}^{2}\right )^{2}+1\right )}}{\ln \left (1-{\mathrm e}^{2}\right )^{2}+2 \ln \left (1-{\mathrm e}^{2}\right )+1}-\frac {4 \ln \left (1-{\mathrm e}^{2}\right )^{2}}{\ln \left (1-{\mathrm e}^{2}\right )^{2}+2 \ln \left (1-{\mathrm e}^{2}\right )+1}-\frac {2 \left (1-{\mathrm e}^{2}\right )^{2 x} {\mathrm e}^{x \left (\ln \left (1-{\mathrm e}^{2}\right )^{2}+1\right )}}{\ln \left (1-{\mathrm e}^{2}\right )^{2}+2 \ln \left (1-{\mathrm e}^{2}\right )+1}-\frac {8 \ln \left (1-{\mathrm e}^{2}\right )}{\ln \left (1-{\mathrm e}^{2}\right )^{2}+2 \ln \left (1-{\mathrm e}^{2}\right )+1}-\frac {4}{\ln \left (1-{\mathrm e}^{2}\right )^{2}+2 \ln \left (1-{\mathrm e}^{2}\right )+1}+\frac {\ln \left ({\mathrm e}^{2 \left (1-{\mathrm e}^{2}\right )^{2 x} {\mathrm e}^{x \left (\ln \left (1-{\mathrm e}^{2}\right )^{2}+1\right )}+4}-1\right ) \ln \left (1-{\mathrm e}^{2}\right )^{2}}{\ln \left (1-{\mathrm e}^{2}\right )^{2}+2 \ln \left (1-{\mathrm e}^{2}\right )+1}+\frac {2 \ln \left ({\mathrm e}^{2 \left (1-{\mathrm e}^{2}\right )^{2 x} {\mathrm e}^{x \left (\ln \left (1-{\mathrm e}^{2}\right )^{2}+1\right )}+4}-1\right ) \ln \left (1-{\mathrm e}^{2}\right )}{\ln \left (1-{\mathrm e}^{2}\right )^{2}+2 \ln \left (1-{\mathrm e}^{2}\right )+1}+\frac {\ln \left ({\mathrm e}^{2 \left (1-{\mathrm e}^{2}\right )^{2 x} {\mathrm e}^{x \left (\ln \left (1-{\mathrm e}^{2}\right )^{2}+1\right )}+4}-1\right )}{\ln \left (1-{\mathrm e}^{2}\right )^{2}+2 \ln \left (1-{\mathrm e}^{2}\right )+1}\) | \(501\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.39, size = 32, normalized size = 1.07 \begin {gather*} \log \left (e^{\left (2 \, e^{\left (x \log \left (-e^{2} + 1\right )^{2} + 2 \, x \log \left (-e^{2} + 1\right ) + x\right )} + 4\right )} - 1\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 6.64, size = 32, normalized size = 1.07 \begin {gather*} \ln \left ({\mathrm {e}}^{2\,{\mathrm {e}}^{x\,{\ln \left (1-{\mathrm {e}}^2\right )}^2}\,{\mathrm {e}}^x\,{\left (1-{\mathrm {e}}^2\right )}^{2\,x}+4}-1\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 123.74, size = 82, normalized size = 2.73 \begin {gather*} \frac {\left (2 + 4 \log {\left (-1 + e^{2} \right )} + 4 i \pi + 2 \left (\log {\left (-1 + e^{2} \right )} + i \pi \right )^{2}\right ) \log {\left (e^{2 e^{x + 2 x \left (\log {\left (-1 + e^{2} \right )} + i \pi \right ) + x \left (\log {\left (-1 + e^{2} \right )} + i \pi \right )^{2}} + 4} - 1 \right )}}{2 \left (1 + \log {\left (-1 + e^{2} \right )} + i \pi \right )^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________