Optimal. Leaf size=20 \[ \log \left (4 \left (4+\left (-5+5 e^{\frac {1}{\frac {1}{4}+x}}\right )^2\right )\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.30, antiderivative size = 29, normalized size of antiderivative = 1.45, number of steps used = 3, number of rules used = 3, integrand size = 84, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.036, Rules used = {6741, 12, 6684} \begin {gather*} \log \left (-50 e^{\frac {4}{4 x+1}}+25 e^{\frac {8}{4 x+1}}+29\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 6684
Rule 6741
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {800 e^{\frac {4}{1+4 x}} \left (1-e^{\frac {4}{1+4 x}}\right )}{\left (29-50 e^{\frac {4}{1+4 x}}+25 e^{\frac {8}{1+4 x}}\right ) (1+4 x)^2} \, dx\\ &=800 \int \frac {e^{\frac {4}{1+4 x}} \left (1-e^{\frac {4}{1+4 x}}\right )}{\left (29-50 e^{\frac {4}{1+4 x}}+25 e^{\frac {8}{1+4 x}}\right ) (1+4 x)^2} \, dx\\ &=\log \left (29-50 e^{\frac {4}{1+4 x}}+25 e^{\frac {8}{1+4 x}}\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.17, size = 29, normalized size = 1.45 \begin {gather*} \log \left (29-50 e^{\frac {4}{1+4 x}}+25 e^{\frac {8}{1+4 x}}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.54, size = 27, normalized size = 1.35 \begin {gather*} \log \left (25 \, e^{\left (\frac {8}{4 \, x + 1}\right )} - 50 \, e^{\left (\frac {4}{4 \, x + 1}\right )} + 29\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.16, size = 27, normalized size = 1.35 \begin {gather*} \log \left (25 \, e^{\left (\frac {8}{4 \, x + 1}\right )} - 50 \, e^{\left (\frac {4}{4 \, x + 1}\right )} + 29\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.11, size = 30, normalized size = 1.50
method | result | size |
derivativedivides | \(\ln \left (25 \,{\mathrm e}^{\frac {8}{4 x +1}}-50 \,{\mathrm e}^{\frac {4}{4 x +1}}+29\right )\) | \(30\) |
default | \(\ln \left (25 \,{\mathrm e}^{\frac {8}{4 x +1}}-50 \,{\mathrm e}^{\frac {4}{4 x +1}}+29\right )\) | \(30\) |
norman | \(\ln \left (25 \,{\mathrm e}^{\frac {8}{4 x +1}}-50 \,{\mathrm e}^{\frac {4}{4 x +1}}+29\right )\) | \(30\) |
risch | \(\frac {2}{x +\frac {1}{4}}-\frac {8}{4 x +1}+\ln \left ({\mathrm e}^{\frac {8}{4 x +1}}-2 \,{\mathrm e}^{\frac {4}{4 x +1}}+\frac {29}{25}\right )\) | \(43\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.41, size = 25, normalized size = 1.25 \begin {gather*} \log \left (e^{\left (\frac {8}{4 \, x + 1}\right )} - 2 \, e^{\left (\frac {4}{4 \, x + 1}\right )} + \frac {29}{25}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.49, size = 27, normalized size = 1.35 \begin {gather*} \ln \left (25\,{\mathrm {e}}^{\frac {8}{4\,x+1}}-50\,{\mathrm {e}}^{\frac {4}{4\,x+1}}+29\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.36, size = 22, normalized size = 1.10 \begin {gather*} \log {\left (e^{\frac {8}{4 x + 1}} - 2 e^{\frac {4}{4 x + 1}} + \frac {29}{25} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________