3.77.96 \(\int \frac {1}{3} e^{-x} (-3+3 e^x+3 x+(2-2 x) \log (3)) \, dx\)

Optimal. Leaf size=23 \[ 5+x-e^{-x} x+\frac {2}{3} e^{-x} x \log (3) \]

________________________________________________________________________________________

Rubi [A]  time = 0.07, antiderivative size = 37, normalized size of antiderivative = 1.61, number of steps used = 5, number of rules used = 4, integrand size = 27, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.148, Rules used = {12, 6688, 2176, 2194} \begin {gather*} x+\frac {1}{3} e^{-x} (1-x) (3-\log (9))-\frac {1}{3} e^{-x} (3-\log (9)) \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(-3 + 3*E^x + 3*x + (2 - 2*x)*Log[3])/(3*E^x),x]

[Out]

x - (3 - Log[9])/(3*E^x) + ((1 - x)*(3 - Log[9]))/(3*E^x)

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 2176

Int[((b_.)*(F_)^((g_.)*((e_.) + (f_.)*(x_))))^(n_.)*((c_.) + (d_.)*(x_))^(m_.), x_Symbol] :> Simp[((c + d*x)^m
*(b*F^(g*(e + f*x)))^n)/(f*g*n*Log[F]), x] - Dist[(d*m)/(f*g*n*Log[F]), Int[(c + d*x)^(m - 1)*(b*F^(g*(e + f*x
)))^n, x], x] /; FreeQ[{F, b, c, d, e, f, g, n}, x] && GtQ[m, 0] && IntegerQ[2*m] &&  !$UseGamma === True

Rule 2194

Int[((F_)^((c_.)*((a_.) + (b_.)*(x_))))^(n_.), x_Symbol] :> Simp[(F^(c*(a + b*x)))^n/(b*c*n*Log[F]), x] /; Fre
eQ[{F, a, b, c, n}, x]

Rule 6688

Int[u_, x_Symbol] :> With[{v = SimplifyIntegrand[u, x]}, Int[v, x] /; SimplerIntegrandQ[v, u, x]]

Rubi steps

\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{3} \int e^{-x} \left (-3+3 e^x+3 x+(2-2 x) \log (3)\right ) \, dx\\ &=\frac {1}{3} \int \left (3-e^{-x} (-1+x) (-3+\log (9))\right ) \, dx\\ &=x+\frac {1}{3} (3-\log (9)) \int e^{-x} (-1+x) \, dx\\ &=x+\frac {1}{3} e^{-x} (1-x) (3-\log (9))+\frac {1}{3} (3-\log (9)) \int e^{-x} \, dx\\ &=x-\frac {1}{3} e^{-x} (3-\log (9))+\frac {1}{3} e^{-x} (1-x) (3-\log (9))\\ \end {aligned} \end {gather*}

________________________________________________________________________________________

Mathematica [A]  time = 0.01, size = 16, normalized size = 0.70 \begin {gather*} x+\frac {1}{3} e^{-x} x (-3+\log (9)) \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(-3 + 3*E^x + 3*x + (2 - 2*x)*Log[3])/(3*E^x),x]

[Out]

x + (x*(-3 + Log[9]))/(3*E^x)

________________________________________________________________________________________

fricas [A]  time = 0.84, size = 20, normalized size = 0.87 \begin {gather*} \frac {1}{3} \, {\left (3 \, x e^{x} + 2 \, x \log \relax (3) - 3 \, x\right )} e^{\left (-x\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/3*(3*exp(x)+(-2*x+2)*log(3)+3*x-3)/exp(x),x, algorithm="fricas")

[Out]

1/3*(3*x*e^x + 2*x*log(3) - 3*x)*e^(-x)

________________________________________________________________________________________

giac [A]  time = 0.17, size = 17, normalized size = 0.74 \begin {gather*} \frac {1}{3} \, {\left (2 \, x \log \relax (3) - 3 \, x\right )} e^{\left (-x\right )} + x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/3*(3*exp(x)+(-2*x+2)*log(3)+3*x-3)/exp(x),x, algorithm="giac")

[Out]

1/3*(2*x*log(3) - 3*x)*e^(-x) + x

________________________________________________________________________________________

maple [A]  time = 0.03, size = 16, normalized size = 0.70




method result size



risch \(x +\frac {\left (2 \ln \relax (3)-3\right ) x \,{\mathrm e}^{-x}}{3}\) \(16\)
default \(x -x \,{\mathrm e}^{-x}+\frac {2 x \ln \relax (3) {\mathrm e}^{-x}}{3}\) \(19\)
norman \(\left (\left (\frac {2 \ln \relax (3)}{3}-1\right ) x +{\mathrm e}^{x} x \right ) {\mathrm e}^{-x}\) \(19\)



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/3*(3*exp(x)+(-2*x+2)*ln(3)+3*x-3)/exp(x),x,method=_RETURNVERBOSE)

[Out]

x+1/3*(2*ln(3)-3)*x*exp(-x)

________________________________________________________________________________________

maxima [A]  time = 0.36, size = 34, normalized size = 1.48 \begin {gather*} \frac {2}{3} \, {\left (x + 1\right )} e^{\left (-x\right )} \log \relax (3) - {\left (x + 1\right )} e^{\left (-x\right )} - \frac {2}{3} \, e^{\left (-x\right )} \log \relax (3) + x + e^{\left (-x\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/3*(3*exp(x)+(-2*x+2)*log(3)+3*x-3)/exp(x),x, algorithm="maxima")

[Out]

2/3*(x + 1)*e^(-x)*log(3) - (x + 1)*e^(-x) - 2/3*e^(-x)*log(3) + x + e^(-x)

________________________________________________________________________________________

mupad [B]  time = 0.11, size = 19, normalized size = 0.83 \begin {gather*} \frac {x\,\left (2\,{\mathrm {e}}^{-x}\,\ln \relax (3)-3\,{\mathrm {e}}^{-x}+3\right )}{3} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(exp(-x)*(x + exp(x) - (log(3)*(2*x - 2))/3 - 1),x)

[Out]

(x*(2*exp(-x)*log(3) - 3*exp(-x) + 3))/3

________________________________________________________________________________________

sympy [A]  time = 0.12, size = 15, normalized size = 0.65 \begin {gather*} x + \frac {\left (- 3 x + 2 x \log {\relax (3 )}\right ) e^{- x}}{3} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/3*(3*exp(x)+(-2*x+2)*ln(3)+3*x-3)/exp(x),x)

[Out]

x + (-3*x + 2*x*log(3))*exp(-x)/3

________________________________________________________________________________________