Optimal. Leaf size=32 \[ x-\frac {1}{3} x \left (\left (1+\frac {e}{25}\right )^2+\frac {2}{2-x}+\frac {2}{x}+x\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.06, antiderivative size = 32, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 3, integrand size = 54, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.056, Rules used = {27, 12, 1850} \begin {gather*} -\frac {x^2}{3}+\frac {(1250-e (50+e)) x}{1875}-\frac {4}{3 (2-x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 27
Rule 1850
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {2500-10000 x+6250 x^2-1250 x^3+e \left (-200+200 x-50 x^2\right )+e^2 \left (-4+4 x-x^2\right )}{1875 (-2+x)^2} \, dx\\ &=\frac {\int \frac {2500-10000 x+6250 x^2-1250 x^3+e \left (-200+200 x-50 x^2\right )+e^2 \left (-4+4 x-x^2\right )}{(-2+x)^2} \, dx}{1875}\\ &=\frac {\int \left (1250 \left (1-\frac {e (50+e)}{1250}\right )-\frac {2500}{(-2+x)^2}-1250 x\right ) \, dx}{1875}\\ &=-\frac {4}{3 (2-x)}+\frac {(1250-e (50+e)) x}{1875}-\frac {x^2}{3}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.02, size = 38, normalized size = 1.19 \begin {gather*} \frac {4}{3 (-2+x)}-\frac {1}{3} (-2+x)^2-\frac {2 x}{3}-\frac {2 e x}{75}-\frac {e^2 x}{1875} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.15, size = 43, normalized size = 1.34 \begin {gather*} -\frac {625 \, x^{3} - 2500 \, x^{2} + {\left (x^{2} - 2 \, x\right )} e^{2} + 50 \, {\left (x^{2} - 2 \, x\right )} e + 2500 \, x - 2500}{1875 \, {\left (x - 2\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.13, size = 26, normalized size = 0.81 \begin {gather*} -\frac {1}{3} \, x^{2} - \frac {1}{1875} \, x e^{2} - \frac {2}{75} \, x e + \frac {2}{3} \, x + \frac {4}{3 \, {\left (x - 2\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.27, size = 27, normalized size = 0.84
method | result | size |
default | \(-\frac {x^{2}}{3}+\frac {2 x}{3}-\frac {{\mathrm e}^{2} x}{1875}-\frac {2 x \,{\mathrm e}}{75}+\frac {4}{3 \left (x -2\right )}\) | \(27\) |
risch | \(-\frac {x^{2}}{3}+\frac {2 x}{3}-\frac {{\mathrm e}^{2} x}{1875}-\frac {2 x \,{\mathrm e}}{75}+\frac {4}{3 \left (x -2\right )}\) | \(27\) |
norman | \(\frac {\left (-\frac {{\mathrm e}^{2}}{1875}-\frac {2 \,{\mathrm e}}{75}+\frac {4}{3}\right ) x^{2}-\frac {x^{3}}{3}-\frac {4}{3}+\frac {4 \,{\mathrm e}^{2}}{1875}+\frac {8 \,{\mathrm e}}{75}}{x -2}\) | \(40\) |
gosper | \(-\frac {x^{2} {\mathrm e}^{2}+50 x^{2} {\mathrm e}+625 x^{3}-4 \,{\mathrm e}^{2}-2500 x^{2}-200 \,{\mathrm e}+2500}{1875 \left (x -2\right )}\) | \(45\) |
meijerg | \(\frac {x}{3-\frac {3 x}{2}}-2 \left (-\frac {{\mathrm e}^{2}}{1875}-\frac {2 \,{\mathrm e}}{75}+\frac {10}{3}\right ) \left (-\frac {x \left (-\frac {3 x}{2}+6\right )}{6 \left (1-\frac {x}{2}\right )}-2 \ln \left (1-\frac {x}{2}\right )\right )-2 \left (-\frac {2 \,{\mathrm e}^{2}}{1875}-\frac {4 \,{\mathrm e}}{75}+\frac {8}{3}\right ) \left (\frac {x}{2-x}+\ln \left (1-\frac {x}{2}\right )\right )-\frac {x \left (-\frac {1}{2} x^{2}-3 x +12\right )}{3 \left (1-\frac {x}{2}\right )}-8 \ln \left (1-\frac {x}{2}\right )-\frac {{\mathrm e}^{2} x}{1875 \left (1-\frac {x}{2}\right )}-\frac {2 \,{\mathrm e} x}{75 \left (1-\frac {x}{2}\right )}\) | \(129\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.35, size = 24, normalized size = 0.75 \begin {gather*} -\frac {1}{3} \, x^{2} - \frac {1}{1875} \, x {\left (e^{2} + 50 \, e - 1250\right )} + \frac {4}{3 \, {\left (x - 2\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.30, size = 28, normalized size = 0.88 \begin {gather*} \frac {4}{3\,\left (x-2\right )}-x\,\left (\frac {2\,\mathrm {e}}{75}+\frac {{\mathrm {e}}^2}{1875}-\frac {2}{3}\right )-\frac {x^2}{3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.14, size = 27, normalized size = 0.84 \begin {gather*} - \frac {x^{2}}{3} - x \left (- \frac {2}{3} + \frac {e^{2}}{1875} + \frac {2 e}{75}\right ) + \frac {4}{3 x - 6} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________