Optimal. Leaf size=23 \[ \frac {x^4}{\left (4 \left (x-x^2\right )+\log \left (1+e^4+x\right )\right )^4} \]
________________________________________________________________________________________
Rubi [F] time = 2.00, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-4 x^4+16 x^5+16 e^4 x^5+16 x^6+\left (4 x^3+4 e^4 x^3+4 x^4\right ) \log \left (1+e^4+x\right )}{1024 x^5-4096 x^6+5120 x^7-5120 x^9+4096 x^{10}-1024 x^{11}+e^4 \left (1024 x^5-5120 x^6+10240 x^7-10240 x^8+5120 x^9-1024 x^{10}\right )+\left (1280 x^4-3840 x^5+2560 x^6+2560 x^7-3840 x^8+1280 x^9+e^4 \left (1280 x^4-5120 x^5+7680 x^6-5120 x^7+1280 x^8\right )\right ) \log \left (1+e^4+x\right )+\left (640 x^3-1280 x^4+1280 x^6-640 x^7+e^4 \left (640 x^3-1920 x^4+1920 x^5-640 x^6\right )\right ) \log ^2\left (1+e^4+x\right )+\left (160 x^2-160 x^3-160 x^4+160 x^5+e^4 \left (160 x^2-320 x^3+160 x^4\right )\right ) \log ^3\left (1+e^4+x\right )+\left (20 x-20 x^3+e^4 \left (20 x-20 x^2\right )\right ) \log ^4\left (1+e^4+x\right )+\left (1+e^4+x\right ) \log ^5\left (1+e^4+x\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-4 x^4+\left (16+16 e^4\right ) x^5+16 x^6+\left (4 x^3+4 e^4 x^3+4 x^4\right ) \log \left (1+e^4+x\right )}{1024 x^5-4096 x^6+5120 x^7-5120 x^9+4096 x^{10}-1024 x^{11}+e^4 \left (1024 x^5-5120 x^6+10240 x^7-10240 x^8+5120 x^9-1024 x^{10}\right )+\left (1280 x^4-3840 x^5+2560 x^6+2560 x^7-3840 x^8+1280 x^9+e^4 \left (1280 x^4-5120 x^5+7680 x^6-5120 x^7+1280 x^8\right )\right ) \log \left (1+e^4+x\right )+\left (640 x^3-1280 x^4+1280 x^6-640 x^7+e^4 \left (640 x^3-1920 x^4+1920 x^5-640 x^6\right )\right ) \log ^2\left (1+e^4+x\right )+\left (160 x^2-160 x^3-160 x^4+160 x^5+e^4 \left (160 x^2-320 x^3+160 x^4\right )\right ) \log ^3\left (1+e^4+x\right )+\left (20 x-20 x^3+e^4 \left (20 x-20 x^2\right )\right ) \log ^4\left (1+e^4+x\right )+\left (1+e^4+x\right ) \log ^5\left (1+e^4+x\right )} \, dx\\ &=\int \frac {4 x^3 \left (-x \left (-1+4 \left (1+e^4\right ) x+4 x^2\right )-\left (1+e^4+x\right ) \log \left (1+e^4+x\right )\right )}{\left (1+e^4+x\right ) \left (4 (-1+x) x-\log \left (1+e^4+x\right )\right )^5} \, dx\\ &=4 \int \frac {x^3 \left (-x \left (-1+4 \left (1+e^4\right ) x+4 x^2\right )-\left (1+e^4+x\right ) \log \left (1+e^4+x\right )\right )}{\left (1+e^4+x\right ) \left (4 (-1+x) x-\log \left (1+e^4+x\right )\right )^5} \, dx\\ &=4 \int \left (\frac {x^3}{\left (-4 x+4 x^2-\log \left (1+e^4+x\right )\right )^4}+\frac {x^4 \left (-5-4 e^4+4 \left (1+2 e^4\right ) x+8 x^2\right )}{\left (1+e^4+x\right ) \left (4 x-4 x^2+\log \left (1+e^4+x\right )\right )^5}\right ) \, dx\\ &=4 \int \frac {x^3}{\left (-4 x+4 x^2-\log \left (1+e^4+x\right )\right )^4} \, dx+4 \int \frac {x^4 \left (-5-4 e^4+4 \left (1+2 e^4\right ) x+8 x^2\right )}{\left (1+e^4+x\right ) \left (4 x-4 x^2+\log \left (1+e^4+x\right )\right )^5} \, dx\\ &=4 \int \left (-\frac {\left (1+e^4\right )^3}{\left (-4 x+4 x^2-\log \left (1+e^4+x\right )\right )^5}+\frac {\left (1+e^4\right )^2 x}{\left (-4 x+4 x^2-\log \left (1+e^4+x\right )\right )^5}-\frac {\left (1+e^4\right ) x^2}{\left (-4 x+4 x^2-\log \left (1+e^4+x\right )\right )^5}+\frac {x^3}{\left (-4 x+4 x^2-\log \left (1+e^4+x\right )\right )^5}+\frac {4 x^4}{\left (-4 x+4 x^2-\log \left (1+e^4+x\right )\right )^5}-\frac {8 x^5}{\left (-4 x+4 x^2-\log \left (1+e^4+x\right )\right )^5}+\frac {\left (1+e^4\right )^4}{\left (1+e^4+x\right ) \left (-4 x+4 x^2-\log \left (1+e^4+x\right )\right )^5}\right ) \, dx+4 \int \frac {x^3}{\left (-4 x+4 x^2-\log \left (1+e^4+x\right )\right )^4} \, dx\\ &=4 \int \frac {x^3}{\left (-4 x+4 x^2-\log \left (1+e^4+x\right )\right )^5} \, dx+4 \int \frac {x^3}{\left (-4 x+4 x^2-\log \left (1+e^4+x\right )\right )^4} \, dx+16 \int \frac {x^4}{\left (-4 x+4 x^2-\log \left (1+e^4+x\right )\right )^5} \, dx-32 \int \frac {x^5}{\left (-4 x+4 x^2-\log \left (1+e^4+x\right )\right )^5} \, dx-\left (4 \left (1+e^4\right )\right ) \int \frac {x^2}{\left (-4 x+4 x^2-\log \left (1+e^4+x\right )\right )^5} \, dx+\left (4 \left (1+e^4\right )^2\right ) \int \frac {x}{\left (-4 x+4 x^2-\log \left (1+e^4+x\right )\right )^5} \, dx-\left (4 \left (1+e^4\right )^3\right ) \int \frac {1}{\left (-4 x+4 x^2-\log \left (1+e^4+x\right )\right )^5} \, dx+\left (4 \left (1+e^4\right )^4\right ) \int \frac {1}{\left (1+e^4+x\right ) \left (-4 x+4 x^2-\log \left (1+e^4+x\right )\right )^5} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 4.27, size = 20, normalized size = 0.87 \begin {gather*} \frac {x^4}{\left (-4 (-1+x) x+\log \left (1+e^4+x\right )\right )^4} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 1.46, size = 106, normalized size = 4.61 \begin {gather*} \frac {x^{4}}{256 \, x^{8} - 1024 \, x^{7} + 1536 \, x^{6} - 1024 \, x^{5} + 256 \, x^{4} - 16 \, {\left (x^{2} - x\right )} \log \left (x + e^{4} + 1\right )^{3} + \log \left (x + e^{4} + 1\right )^{4} + 96 \, {\left (x^{4} - 2 \, x^{3} + x^{2}\right )} \log \left (x + e^{4} + 1\right )^{2} - 256 \, {\left (x^{6} - 3 \, x^{5} + 3 \, x^{4} - x^{3}\right )} \log \left (x + e^{4} + 1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.10, size = 24, normalized size = 1.04
method | result | size |
risch | \(\frac {x^{4}}{\left (4 x^{2}-4 x -\ln \left ({\mathrm e}^{4}+x +1\right )\right )^{4}}\) | \(24\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.62, size = 106, normalized size = 4.61 \begin {gather*} \frac {x^{4}}{256 \, x^{8} - 1024 \, x^{7} + 1536 \, x^{6} - 1024 \, x^{5} + 256 \, x^{4} - 16 \, {\left (x^{2} - x\right )} \log \left (x + e^{4} + 1\right )^{3} + \log \left (x + e^{4} + 1\right )^{4} + 96 \, {\left (x^{4} - 2 \, x^{3} + x^{2}\right )} \log \left (x + e^{4} + 1\right )^{2} - 256 \, {\left (x^{6} - 3 \, x^{5} + 3 \, x^{4} - x^{3}\right )} \log \left (x + e^{4} + 1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F(-1)] time = 0.00, size = -1, normalized size = -0.04 \begin {gather*} \text {Hanged} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.45, size = 110, normalized size = 4.78 \begin {gather*} \frac {x^{4}}{256 x^{8} - 1024 x^{7} + 1536 x^{6} - 1024 x^{5} + 256 x^{4} + \left (- 16 x^{2} + 16 x\right ) \log {\left (x + 1 + e^{4} \right )}^{3} + \left (96 x^{4} - 192 x^{3} + 96 x^{2}\right ) \log {\left (x + 1 + e^{4} \right )}^{2} + \left (- 256 x^{6} + 768 x^{5} - 768 x^{4} + 256 x^{3}\right ) \log {\left (x + 1 + e^{4} \right )} + \log {\left (x + 1 + e^{4} \right )}^{4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________