Optimal. Leaf size=18 \[ \frac {2 x^6}{5 \left (4 \log ^2(4)+\log (x)\right )^2} \]
________________________________________________________________________________________
Rubi [C] time = 0.67, antiderivative size = 227, normalized size of antiderivative = 12.61, number of steps used = 16, number of rules used = 9, integrand size = 56, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.161, Rules used = {6, 2561, 6688, 12, 2306, 2309, 2178, 2366, 6482} \begin {gather*} \frac {36}{5} e^{-24 \log ^2(4)} \text {Ei}\left (6 \left (\log (x)+4 \log ^2(4)\right )\right )-\frac {72}{5} e^{-24 \log ^2(4)} \left (-3 \log (x)+1-12 \log ^2(4)\right ) \text {Ei}\left (6 \left (\log (x)+4 \log ^2(4)\right )\right )-\frac {432}{5} e^{-24 \log ^2(4)} \left (\log (x)+4 \log ^2(4)\right ) \text {Ei}\left (6 \left (\log (x)+4 \log ^2(4)\right )\right )+\frac {36}{5} e^{-24 \log ^2(4)} \left (6 \log (x)+1+24 \log ^2(4)\right ) \text {Ei}\left (6 \left (\log (x)+4 \log ^2(4)\right )\right )+\frac {72 x^6}{5}-\frac {6 x^6 \left (6 \log (x)+1+24 \log ^2(4)\right )}{5 \left (\log (x)+4 \log ^2(4)\right )}+\frac {12 x^6 \left (-3 \log (x)+1-12 \log ^2(4)\right )}{5 \left (\log (x)+4 \log ^2(4)\right )}+\frac {2 x^6 \left (-3 \log (x)+1-12 \log ^2(4)\right )}{5 \left (\log (x)+4 \log ^2(4)\right )^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6
Rule 12
Rule 2178
Rule 2306
Rule 2309
Rule 2366
Rule 2561
Rule 6482
Rule 6688
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {x^5 \left (-4+48 \log ^2(4)\right )+12 x^5 \log (x)}{320 \log ^6(4)+240 \log ^4(4) \log (x)+60 \log ^2(4) \log ^2(x)+5 \log ^3(x)} \, dx\\ &=\int \frac {x^5 \left (-4+48 \log ^2(4)+12 \log (x)\right )}{320 \log ^6(4)+240 \log ^4(4) \log (x)+60 \log ^2(4) \log ^2(x)+5 \log ^3(x)} \, dx\\ &=\int \frac {4 x^5 \left (-1+12 \log ^2(4)+3 \log (x)\right )}{5 \left (4 \log ^2(4)+\log (x)\right )^3} \, dx\\ &=\frac {4}{5} \int \frac {x^5 \left (-1+12 \log ^2(4)+3 \log (x)\right )}{\left (4 \log ^2(4)+\log (x)\right )^3} \, dx\\ &=-\frac {72}{5} e^{-24 \log ^2(4)} \text {Ei}\left (6 \left (4 \log ^2(4)+\log (x)\right )\right ) \left (1-12 \log ^2(4)-3 \log (x)\right )+\frac {2 x^6 \left (1-12 \log ^2(4)-3 \log (x)\right )}{5 \left (4 \log ^2(4)+\log (x)\right )^2}+\frac {12 x^6 \left (1-12 \log ^2(4)-3 \log (x)\right )}{5 \left (4 \log ^2(4)+\log (x)\right )}-\frac {12}{5} \int \left (\frac {18 e^{-24 \log ^2(4)} \text {Ei}\left (6 \left (4 \log ^2(4)+\log (x)\right )\right )}{x}-\frac {x^5 \left (1+24 \log ^2(4)+6 \log (x)\right )}{2 \left (4 \log ^2(4)+\log (x)\right )^2}\right ) \, dx\\ &=-\frac {72}{5} e^{-24 \log ^2(4)} \text {Ei}\left (6 \left (4 \log ^2(4)+\log (x)\right )\right ) \left (1-12 \log ^2(4)-3 \log (x)\right )+\frac {2 x^6 \left (1-12 \log ^2(4)-3 \log (x)\right )}{5 \left (4 \log ^2(4)+\log (x)\right )^2}+\frac {12 x^6 \left (1-12 \log ^2(4)-3 \log (x)\right )}{5 \left (4 \log ^2(4)+\log (x)\right )}+\frac {6}{5} \int \frac {x^5 \left (1+24 \log ^2(4)+6 \log (x)\right )}{\left (4 \log ^2(4)+\log (x)\right )^2} \, dx-\frac {1}{5} \left (216 e^{-24 \log ^2(4)}\right ) \int \frac {\text {Ei}\left (6 \left (4 \log ^2(4)+\log (x)\right )\right )}{x} \, dx\\ &=-\frac {72}{5} e^{-24 \log ^2(4)} \text {Ei}\left (6 \left (4 \log ^2(4)+\log (x)\right )\right ) \left (1-12 \log ^2(4)-3 \log (x)\right )+\frac {2 x^6 \left (1-12 \log ^2(4)-3 \log (x)\right )}{5 \left (4 \log ^2(4)+\log (x)\right )^2}+\frac {12 x^6 \left (1-12 \log ^2(4)-3 \log (x)\right )}{5 \left (4 \log ^2(4)+\log (x)\right )}+\frac {36}{5} e^{-24 \log ^2(4)} \text {Ei}\left (6 \left (4 \log ^2(4)+\log (x)\right )\right ) \left (1+24 \log ^2(4)+6 \log (x)\right )-\frac {6 x^6 \left (1+24 \log ^2(4)+6 \log (x)\right )}{5 \left (4 \log ^2(4)+\log (x)\right )}-\frac {36}{5} \int \left (\frac {6 e^{-24 \log ^2(4)} \text {Ei}\left (6 \left (4 \log ^2(4)+\log (x)\right )\right )}{x}-\frac {x^5}{4 \log ^2(4)+\log (x)}\right ) \, dx-\frac {1}{5} \left (216 e^{-24 \log ^2(4)}\right ) \operatorname {Subst}\left (\int \text {Ei}\left (6 \left (x+4 \log ^2(4)\right )\right ) \, dx,x,\log (x)\right )\\ &=-\frac {72}{5} e^{-24 \log ^2(4)} \text {Ei}\left (6 \left (4 \log ^2(4)+\log (x)\right )\right ) \left (1-12 \log ^2(4)-3 \log (x)\right )+\frac {2 x^6 \left (1-12 \log ^2(4)-3 \log (x)\right )}{5 \left (4 \log ^2(4)+\log (x)\right )^2}+\frac {12 x^6 \left (1-12 \log ^2(4)-3 \log (x)\right )}{5 \left (4 \log ^2(4)+\log (x)\right )}+\frac {36}{5} e^{-24 \log ^2(4)} \text {Ei}\left (6 \left (4 \log ^2(4)+\log (x)\right )\right ) \left (1+24 \log ^2(4)+6 \log (x)\right )-\frac {6 x^6 \left (1+24 \log ^2(4)+6 \log (x)\right )}{5 \left (4 \log ^2(4)+\log (x)\right )}+\frac {36}{5} \int \frac {x^5}{4 \log ^2(4)+\log (x)} \, dx-\frac {1}{5} \left (36 e^{-24 \log ^2(4)}\right ) \operatorname {Subst}\left (\int \text {Ei}(x) \, dx,x,24 \log ^2(4)+6 \log (x)\right )-\frac {1}{5} \left (216 e^{-24 \log ^2(4)}\right ) \int \frac {\text {Ei}\left (6 \left (4 \log ^2(4)+\log (x)\right )\right )}{x} \, dx\\ &=\frac {36 x^6}{5}-\frac {72}{5} e^{-24 \log ^2(4)} \text {Ei}\left (6 \left (4 \log ^2(4)+\log (x)\right )\right ) \left (1-12 \log ^2(4)-3 \log (x)\right )+\frac {2 x^6 \left (1-12 \log ^2(4)-3 \log (x)\right )}{5 \left (4 \log ^2(4)+\log (x)\right )^2}+\frac {12 x^6 \left (1-12 \log ^2(4)-3 \log (x)\right )}{5 \left (4 \log ^2(4)+\log (x)\right )}-\frac {216}{5} e^{-24 \log ^2(4)} \text {Ei}\left (24 \log ^2(4)+6 \log (x)\right ) \left (4 \log ^2(4)+\log (x)\right )+\frac {36}{5} e^{-24 \log ^2(4)} \text {Ei}\left (6 \left (4 \log ^2(4)+\log (x)\right )\right ) \left (1+24 \log ^2(4)+6 \log (x)\right )-\frac {6 x^6 \left (1+24 \log ^2(4)+6 \log (x)\right )}{5 \left (4 \log ^2(4)+\log (x)\right )}+\frac {36}{5} \operatorname {Subst}\left (\int \frac {e^{6 x}}{x+4 \log ^2(4)} \, dx,x,\log (x)\right )-\frac {1}{5} \left (216 e^{-24 \log ^2(4)}\right ) \operatorname {Subst}\left (\int \text {Ei}\left (6 \left (x+4 \log ^2(4)\right )\right ) \, dx,x,\log (x)\right )\\ &=\frac {36 x^6}{5}+\frac {36}{5} e^{-24 \log ^2(4)} \text {Ei}\left (6 \left (4 \log ^2(4)+\log (x)\right )\right )-\frac {72}{5} e^{-24 \log ^2(4)} \text {Ei}\left (6 \left (4 \log ^2(4)+\log (x)\right )\right ) \left (1-12 \log ^2(4)-3 \log (x)\right )+\frac {2 x^6 \left (1-12 \log ^2(4)-3 \log (x)\right )}{5 \left (4 \log ^2(4)+\log (x)\right )^2}+\frac {12 x^6 \left (1-12 \log ^2(4)-3 \log (x)\right )}{5 \left (4 \log ^2(4)+\log (x)\right )}-\frac {216}{5} e^{-24 \log ^2(4)} \text {Ei}\left (24 \log ^2(4)+6 \log (x)\right ) \left (4 \log ^2(4)+\log (x)\right )+\frac {36}{5} e^{-24 \log ^2(4)} \text {Ei}\left (6 \left (4 \log ^2(4)+\log (x)\right )\right ) \left (1+24 \log ^2(4)+6 \log (x)\right )-\frac {6 x^6 \left (1+24 \log ^2(4)+6 \log (x)\right )}{5 \left (4 \log ^2(4)+\log (x)\right )}-\frac {1}{5} \left (36 e^{-24 \log ^2(4)}\right ) \operatorname {Subst}\left (\int \text {Ei}(x) \, dx,x,24 \log ^2(4)+6 \log (x)\right )\\ &=\frac {72 x^6}{5}+\frac {36}{5} e^{-24 \log ^2(4)} \text {Ei}\left (6 \left (4 \log ^2(4)+\log (x)\right )\right )-\frac {72}{5} e^{-24 \log ^2(4)} \text {Ei}\left (6 \left (4 \log ^2(4)+\log (x)\right )\right ) \left (1-12 \log ^2(4)-3 \log (x)\right )+\frac {2 x^6 \left (1-12 \log ^2(4)-3 \log (x)\right )}{5 \left (4 \log ^2(4)+\log (x)\right )^2}+\frac {12 x^6 \left (1-12 \log ^2(4)-3 \log (x)\right )}{5 \left (4 \log ^2(4)+\log (x)\right )}-\frac {432}{5} e^{-24 \log ^2(4)} \text {Ei}\left (24 \log ^2(4)+6 \log (x)\right ) \left (4 \log ^2(4)+\log (x)\right )+\frac {36}{5} e^{-24 \log ^2(4)} \text {Ei}\left (6 \left (4 \log ^2(4)+\log (x)\right )\right ) \left (1+24 \log ^2(4)+6 \log (x)\right )-\frac {6 x^6 \left (1+24 \log ^2(4)+6 \log (x)\right )}{5 \left (4 \log ^2(4)+\log (x)\right )}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.06, size = 18, normalized size = 1.00 \begin {gather*} \frac {2 x^6}{5 \left (4 \log ^2(4)+\log (x)\right )^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.95, size = 26, normalized size = 1.44 \begin {gather*} \frac {2 \, x^{6}}{5 \, {\left (256 \, \log \relax (2)^{4} + 32 \, \log \relax (2)^{2} \log \relax (x) + \log \relax (x)^{2}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.13, size = 26, normalized size = 1.44 \begin {gather*} \frac {2 \, x^{6}}{5 \, {\left (256 \, \log \relax (2)^{4} + 32 \, \log \relax (2)^{2} \log \relax (x) + \log \relax (x)^{2}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.11, size = 17, normalized size = 0.94
method | result | size |
norman | \(\frac {2 x^{6}}{5 \left (\ln \relax (x )+16 \ln \relax (2)^{2}\right )^{2}}\) | \(17\) |
risch | \(\frac {2 x^{6}}{5 \left (\ln \relax (x )+16 \ln \relax (2)^{2}\right )^{2}}\) | \(17\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} -\frac {72}{5} \, {\left (48 \, \log \relax (2)^{2} - 1\right )} \int \frac {x^{5}}{16 \, \log \relax (2)^{2} + \log \relax (x)}\,{d x} - \frac {192 \, e^{\left (-96 \, \log \relax (2)^{2}\right )} E_{3}\left (-96 \, \log \relax (2)^{2} - 6 \, \log \relax (x)\right ) \log \relax (2)^{2}}{5 \, {\left (16 \, \log \relax (2)^{2} + \log \relax (x)\right )}^{2}} + \frac {12 \, {\left ({\left (48 \, \log \relax (2)^{2} - 1\right )} x^{6} \log \relax (x) + 8 \, {\left (96 \, \log \relax (2)^{4} - \log \relax (2)^{2}\right )} x^{6}\right )}}{5 \, {\left (256 \, \log \relax (2)^{4} + 32 \, \log \relax (2)^{2} \log \relax (x) + \log \relax (x)^{2}\right )}} + \frac {4 \, e^{\left (-96 \, \log \relax (2)^{2}\right )} E_{3}\left (-96 \, \log \relax (2)^{2} - 6 \, \log \relax (x)\right )}{5 \, {\left (16 \, \log \relax (2)^{2} + \log \relax (x)\right )}^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.02, size = 16, normalized size = 0.89 \begin {gather*} \frac {2\,x^6}{5\,{\left (\ln \relax (x)+16\,{\ln \relax (2)}^2\right )}^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.12, size = 27, normalized size = 1.50 \begin {gather*} \frac {2 x^{6}}{5 \log {\relax (x )}^{2} + 160 \log {\relax (2 )}^{2} \log {\relax (x )} + 1280 \log {\relax (2 )}^{4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________