Optimal. Leaf size=29 \[ \frac {\frac {3}{4 x^2}+\frac {2}{x}+x+\frac {1+5 x}{\log (x)}}{\log ^2(x)} \]
________________________________________________________________________________________
Rubi [F] time = 0.27, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-6 x^2-30 x^3+\left (-3-8 x+6 x^3\right ) \log (x)+\left (-3-4 x+2 x^3\right ) \log ^2(x)}{2 x^3 \log ^4(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{2} \int \frac {-6 x^2-30 x^3+\left (-3-8 x+6 x^3\right ) \log (x)+\left (-3-4 x+2 x^3\right ) \log ^2(x)}{x^3 \log ^4(x)} \, dx\\ &=\frac {1}{2} \int \left (-\frac {6 (1+5 x)}{x \log ^4(x)}+\frac {-3-8 x+6 x^3}{x^3 \log ^3(x)}+\frac {-3-4 x+2 x^3}{x^3 \log ^2(x)}\right ) \, dx\\ &=\frac {1}{2} \int \frac {-3-8 x+6 x^3}{x^3 \log ^3(x)} \, dx+\frac {1}{2} \int \frac {-3-4 x+2 x^3}{x^3 \log ^2(x)} \, dx-3 \int \frac {1+5 x}{x \log ^4(x)} \, dx\\ &=\frac {1}{2} \int \frac {-3-8 x+6 x^3}{x^3 \log ^3(x)} \, dx+\frac {1}{2} \int \frac {-3-4 x+2 x^3}{x^3 \log ^2(x)} \, dx-3 \int \left (\frac {5}{\log ^4(x)}+\frac {1}{x \log ^4(x)}\right ) \, dx\\ &=\frac {1}{2} \int \frac {-3-8 x+6 x^3}{x^3 \log ^3(x)} \, dx+\frac {1}{2} \int \frac {-3-4 x+2 x^3}{x^3 \log ^2(x)} \, dx-3 \int \frac {1}{x \log ^4(x)} \, dx-15 \int \frac {1}{\log ^4(x)} \, dx\\ &=\frac {5 x}{\log ^3(x)}+\frac {1}{2} \int \frac {-3-8 x+6 x^3}{x^3 \log ^3(x)} \, dx+\frac {1}{2} \int \frac {-3-4 x+2 x^3}{x^3 \log ^2(x)} \, dx-3 \operatorname {Subst}\left (\int \frac {1}{x^4} \, dx,x,\log (x)\right )-5 \int \frac {1}{\log ^3(x)} \, dx\\ &=\frac {1}{\log ^3(x)}+\frac {5 x}{\log ^3(x)}+\frac {5 x}{2 \log ^2(x)}+\frac {1}{2} \int \frac {-3-8 x+6 x^3}{x^3 \log ^3(x)} \, dx+\frac {1}{2} \int \frac {-3-4 x+2 x^3}{x^3 \log ^2(x)} \, dx-\frac {5}{2} \int \frac {1}{\log ^2(x)} \, dx\\ &=\frac {1}{\log ^3(x)}+\frac {5 x}{\log ^3(x)}+\frac {5 x}{2 \log ^2(x)}+\frac {5 x}{2 \log (x)}+\frac {1}{2} \int \frac {-3-8 x+6 x^3}{x^3 \log ^3(x)} \, dx+\frac {1}{2} \int \frac {-3-4 x+2 x^3}{x^3 \log ^2(x)} \, dx-\frac {5}{2} \int \frac {1}{\log (x)} \, dx\\ &=\frac {1}{\log ^3(x)}+\frac {5 x}{\log ^3(x)}+\frac {5 x}{2 \log ^2(x)}+\frac {5 x}{2 \log (x)}-\frac {5 \text {li}(x)}{2}+\frac {1}{2} \int \frac {-3-8 x+6 x^3}{x^3 \log ^3(x)} \, dx+\frac {1}{2} \int \frac {-3-4 x+2 x^3}{x^3 \log ^2(x)} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.19, size = 29, normalized size = 1.00 \begin {gather*} \frac {4+20 x+\frac {\left (3+8 x+4 x^3\right ) \log (x)}{x^2}}{4 \log ^3(x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.50, size = 33, normalized size = 1.14 \begin {gather*} \frac {20 \, x^{3} + 4 \, x^{2} + {\left (4 \, x^{3} + 8 \, x + 3\right )} \log \relax (x)}{4 \, x^{2} \log \relax (x)^{3}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.15, size = 36, normalized size = 1.24 \begin {gather*} \frac {4 \, x^{3} \log \relax (x) + 20 \, x^{3} + 4 \, x^{2} + 8 \, x \log \relax (x) + 3 \, \log \relax (x)}{4 \, x^{2} \log \relax (x)^{3}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.02, size = 33, normalized size = 1.14
method | result | size |
norman | \(\frac {x^{2}+x^{3} \ln \relax (x )+5 x^{3}+2 x \ln \relax (x )+\frac {3 \ln \relax (x )}{4}}{x^{2} \ln \relax (x )^{3}}\) | \(33\) |
default | \(\frac {x}{\ln \relax (x )^{2}}+\frac {5 x}{\ln \relax (x )^{3}}+\frac {2}{x \ln \relax (x )^{2}}+\frac {1}{\ln \relax (x )^{3}}+\frac {3}{4 x^{2} \ln \relax (x )^{2}}\) | \(37\) |
risch | \(\frac {4 x^{3} \ln \relax (x )+20 x^{3}+4 x^{2}+8 x \ln \relax (x )+3 \ln \relax (x )}{4 x^{2} \ln \relax (x )^{3}}\) | \(37\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [C] time = 0.41, size = 55, normalized size = 1.90 \begin {gather*} \frac {1}{\log \relax (x)^{3}} + 3 \, \Gamma \left (-1, 2 \, \log \relax (x)\right ) + \Gamma \left (-1, -\log \relax (x)\right ) + 2 \, \Gamma \left (-1, \log \relax (x)\right ) + 6 \, \Gamma \left (-2, 2 \, \log \relax (x)\right ) - 3 \, \Gamma \left (-2, -\log \relax (x)\right ) + 4 \, \Gamma \left (-2, \log \relax (x)\right ) - 15 \, \Gamma \left (-3, -\log \relax (x)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 6.39, size = 28, normalized size = 0.97 \begin {gather*} \frac {\ln \relax (x)\,\left (x^3+2\,x+\frac {3}{4}\right )+x^2+5\,x^3}{x^2\,{\ln \relax (x)}^3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.15, size = 32, normalized size = 1.10 \begin {gather*} \frac {20 x^{3} + 4 x^{2} + \left (4 x^{3} + 8 x + 3\right ) \log {\relax (x )}}{4 x^{2} \log {\relax (x )}^{3}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________