Optimal. Leaf size=22 \[ 5+\frac {34225 (5-2 x)^2 (2-\log (x))^2}{x^2} \]
________________________________________________________________________________________
Rubi [B] time = 0.17, antiderivative size = 53, normalized size of antiderivative = 2.41, number of steps used = 15, number of rules used = 6, integrand size = 37, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.162, Rules used = {14, 2357, 2304, 2301, 2353, 2305} \begin {gather*} \frac {3422500}{x^2}+\frac {855625 \log ^2(x)}{x^2}-\frac {3422500 \log (x)}{x^2}-\frac {2738000}{x}-\frac {684500 \log ^2(x)}{x}+136900 \log ^2(x)+\frac {2738000 \log (x)}{x}-547600 \log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 14
Rule 2301
Rule 2304
Rule 2305
Rule 2353
Rule 2357
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-\frac {136900 \left (75-40 x+4 x^2\right )}{x^3}+\frac {68450 (-25+2 x) (-5+2 x) \log (x)}{x^3}+\frac {342250 (-5+2 x) \log ^2(x)}{x^3}\right ) \, dx\\ &=68450 \int \frac {(-25+2 x) (-5+2 x) \log (x)}{x^3} \, dx-136900 \int \frac {75-40 x+4 x^2}{x^3} \, dx+342250 \int \frac {(-5+2 x) \log ^2(x)}{x^3} \, dx\\ &=68450 \int \left (\frac {125 \log (x)}{x^3}-\frac {60 \log (x)}{x^2}+\frac {4 \log (x)}{x}\right ) \, dx-136900 \int \left (\frac {75}{x^3}-\frac {40}{x^2}+\frac {4}{x}\right ) \, dx+342250 \int \left (-\frac {5 \log ^2(x)}{x^3}+\frac {2 \log ^2(x)}{x^2}\right ) \, dx\\ &=\frac {5133750}{x^2}-\frac {5476000}{x}-547600 \log (x)+273800 \int \frac {\log (x)}{x} \, dx+684500 \int \frac {\log ^2(x)}{x^2} \, dx-1711250 \int \frac {\log ^2(x)}{x^3} \, dx-4107000 \int \frac {\log (x)}{x^2} \, dx+8556250 \int \frac {\log (x)}{x^3} \, dx\\ &=\frac {5989375}{2 x^2}-\frac {1369000}{x}-547600 \log (x)-\frac {4278125 \log (x)}{x^2}+\frac {4107000 \log (x)}{x}+136900 \log ^2(x)+\frac {855625 \log ^2(x)}{x^2}-\frac {684500 \log ^2(x)}{x}+1369000 \int \frac {\log (x)}{x^2} \, dx-1711250 \int \frac {\log (x)}{x^3} \, dx\\ &=\frac {3422500}{x^2}-\frac {2738000}{x}-547600 \log (x)-\frac {3422500 \log (x)}{x^2}+\frac {2738000 \log (x)}{x}+136900 \log ^2(x)+\frac {855625 \log ^2(x)}{x^2}-\frac {684500 \log ^2(x)}{x}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.04, size = 57, normalized size = 2.59 \begin {gather*} 68450 \left (\frac {50}{x^2}-\frac {40}{x}-8 \log (x)-\frac {50 \log (x)}{x^2}+\frac {40 \log (x)}{x}+2 \log ^2(x)+\frac {25 \log ^2(x)}{2 x^2}-\frac {10 \log ^2(x)}{x}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.72, size = 39, normalized size = 1.77 \begin {gather*} \frac {34225 \, {\left ({\left (4 \, x^{2} - 20 \, x + 25\right )} \log \relax (x)^{2} - 4 \, {\left (4 \, x^{2} - 20 \, x + 25\right )} \log \relax (x) - 80 \, x + 100\right )}}{x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {68450 \, {\left (5 \, {\left (2 \, x - 5\right )} \log \relax (x)^{2} - 8 \, x^{2} + {\left (4 \, x^{2} - 60 \, x + 125\right )} \log \relax (x) + 80 \, x - 150\right )}}{x^{3}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.02, size = 48, normalized size = 2.18
method | result | size |
norman | \(\frac {3422500-547600 x^{2} \ln \relax (x )-2738000 x +855625 \ln \relax (x )^{2}+2738000 x \ln \relax (x )-684500 x \ln \relax (x )^{2}+136900 x^{2} \ln \relax (x )^{2}-3422500 \ln \relax (x )}{x^{2}}\) | \(48\) |
risch | \(\frac {34225 \left (4 x^{2}-20 x +25\right ) \ln \relax (x )^{2}}{x^{2}}+\frac {684500 \left (4 x -5\right ) \ln \relax (x )}{x^{2}}-\frac {136900 \left (4 x^{2} \ln \relax (x )+20 x -25\right )}{x^{2}}\) | \(50\) |
default | \(-\frac {684500 \ln \relax (x )^{2}}{x}+\frac {2738000 \ln \relax (x )}{x}-\frac {2738000}{x}+136900 \ln \relax (x )^{2}+\frac {855625 \ln \relax (x )^{2}}{x^{2}}-\frac {3422500 \ln \relax (x )}{x^{2}}+\frac {3422500}{x^{2}}-547600 \ln \relax (x )\) | \(54\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.36, size = 67, normalized size = 3.05 \begin {gather*} 136900 \, \log \relax (x)^{2} - \frac {684500 \, {\left (\log \relax (x)^{2} + 2 \, \log \relax (x) + 2\right )}}{x} + \frac {4107000 \, \log \relax (x)}{x} + \frac {855625 \, {\left (2 \, \log \relax (x)^{2} + 2 \, \log \relax (x) + 1\right )}}{2 \, x^{2}} - \frac {1369000}{x} - \frac {4278125 \, \log \relax (x)}{x^{2}} + \frac {5989375}{2 \, x^{2}} - 547600 \, \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.16, size = 47, normalized size = 2.14 \begin {gather*} \frac {x\,\left (855625\,{\ln \relax (x)}^2-3422500\,\ln \relax (x)+3422500\right )-x^2\,\left (684500\,{\ln \relax (x)}^2-2738000\,\ln \relax (x)+2738000\right )}{x^3}-547600\,\ln \relax (x)+136900\,{\ln \relax (x)}^2 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.21, size = 42, normalized size = 1.91 \begin {gather*} - 547600 \log {\relax (x )} + \frac {\left (2738000 x - 3422500\right ) \log {\relax (x )}}{x^{2}} - \frac {2738000 x - 3422500}{x^{2}} + \frac {\left (136900 x^{2} - 684500 x + 855625\right ) \log {\relax (x )}^{2}}{x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________