3.77.47 \(\int \frac {-\frac {3 e^2}{x}+6 x-3 e^3 x-2 x^2}{3 x} \, dx\)

Optimal. Leaf size=29 \[ e^3-e^3 (-4+x)+\frac {e^2}{x}+2 x-\frac {x^2}{3} \]

________________________________________________________________________________________

Rubi [A]  time = 0.02, antiderivative size = 24, normalized size of antiderivative = 0.83, number of steps used = 4, number of rules used = 3, integrand size = 30, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.100, Rules used = {6, 12, 14} \begin {gather*} -\frac {x^2}{3}+\left (2-e^3\right ) x+\frac {e^2}{x} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[((-3*E^2)/x + 6*x - 3*E^3*x - 2*x^2)/(3*x),x]

[Out]

E^2/x + (2 - E^3)*x - x^2/3

Rule 6

Int[(u_.)*((w_.) + (a_.)*(v_) + (b_.)*(v_))^(p_.), x_Symbol] :> Int[u*((a + b)*v + w)^p, x] /; FreeQ[{a, b}, x
] &&  !FreeQ[v, x]

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 14

Int[(u_)*((c_.)*(x_))^(m_.), x_Symbol] :> Int[ExpandIntegrand[(c*x)^m*u, x], x] /; FreeQ[{c, m}, x] && SumQ[u]
 &&  !LinearQ[u, x] &&  !MatchQ[u, (a_) + (b_.)*(v_) /; FreeQ[{a, b}, x] && InverseFunctionQ[v]]

Rubi steps

\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-\frac {3 e^2}{x}+\left (6-3 e^3\right ) x-2 x^2}{3 x} \, dx\\ &=\frac {1}{3} \int \frac {-\frac {3 e^2}{x}+\left (6-3 e^3\right ) x-2 x^2}{x} \, dx\\ &=\frac {1}{3} \int \left (-3 \left (-2+e^3\right )-\frac {3 e^2}{x^2}-2 x\right ) \, dx\\ &=\frac {e^2}{x}+\left (2-e^3\right ) x-\frac {x^2}{3}\\ \end {aligned} \end {gather*}

________________________________________________________________________________________

Mathematica [A]  time = 0.00, size = 24, normalized size = 0.83 \begin {gather*} \frac {e^2}{x}+2 x-e^3 x-\frac {x^2}{3} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[((-3*E^2)/x + 6*x - 3*E^3*x - 2*x^2)/(3*x),x]

[Out]

E^2/x + 2*x - E^3*x - x^2/3

________________________________________________________________________________________

fricas [A]  time = 0.56, size = 25, normalized size = 0.86 \begin {gather*} -\frac {x^{3} + 3 \, x^{2} e^{3} - 6 \, x^{2} - 3 \, e^{2}}{3 \, x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/3*(-3*exp(-log(x)+2)-3*x*exp(3)-2*x^2+6*x)/x,x, algorithm="fricas")

[Out]

-1/3*(x^3 + 3*x^2*e^3 - 6*x^2 - 3*e^2)/x

________________________________________________________________________________________

giac [A]  time = 0.15, size = 20, normalized size = 0.69 \begin {gather*} -\frac {1}{3} \, x^{2} - x e^{3} + 2 \, x + \frac {e^{2}}{x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/3*(-3*exp(-log(x)+2)-3*x*exp(3)-2*x^2+6*x)/x,x, algorithm="giac")

[Out]

-1/3*x^2 - x*e^3 + 2*x + e^2/x

________________________________________________________________________________________

maple [A]  time = 0.03, size = 21, normalized size = 0.72




method result size



risch \(-x \,{\mathrm e}^{3}-\frac {x^{2}}{3}+2 x +\frac {{\mathrm e}^{2}}{x}\) \(21\)
default \(-\frac {x^{2}}{3}+2 x +{\mathrm e}^{-\ln \relax (x )+2}-x \,{\mathrm e}^{3}\) \(22\)
norman \(\frac {\left (2-{\mathrm e}^{3}\right ) x^{2}-\frac {x^{3}}{3}+{\mathrm e}^{2}}{x}\) \(23\)



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/3*(-3*exp(-ln(x)+2)-3*x*exp(3)-2*x^2+6*x)/x,x,method=_RETURNVERBOSE)

[Out]

-x*exp(3)-1/3*x^2+2*x+exp(2)/x

________________________________________________________________________________________

maxima [A]  time = 0.36, size = 19, normalized size = 0.66 \begin {gather*} -\frac {1}{3} \, x^{2} - x {\left (e^{3} - 2\right )} + \frac {e^{2}}{x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/3*(-3*exp(-log(x)+2)-3*x*exp(3)-2*x^2+6*x)/x,x, algorithm="maxima")

[Out]

-1/3*x^2 - x*(e^3 - 2) + e^2/x

________________________________________________________________________________________

mupad [B]  time = 0.08, size = 23, normalized size = 0.79 \begin {gather*} -\frac {\frac {x^3}{3}+\left ({\mathrm {e}}^3-2\right )\,x^2-{\mathrm {e}}^2}{x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-(exp(2 - log(x)) - 2*x + x*exp(3) + (2*x^2)/3)/x,x)

[Out]

-(x^3/3 - exp(2) + x^2*(exp(3) - 2))/x

________________________________________________________________________________________

sympy [A]  time = 0.10, size = 19, normalized size = 0.66 \begin {gather*} - \frac {x^{2}}{3} - \frac {x \left (-6 + 3 e^{3}\right )}{3} + \frac {e^{2}}{x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/3*(-3*exp(-ln(x)+2)-3*x*exp(3)-2*x**2+6*x)/x,x)

[Out]

-x**2/3 - x*(-6 + 3*exp(3))/3 + exp(2)/x

________________________________________________________________________________________