Optimal. Leaf size=26 \[ 2-\frac {1}{25} e^{2 x^3+\frac {e^x x}{\log (5)}}-x \]
________________________________________________________________________________________
Rubi [A] time = 0.13, antiderivative size = 25, normalized size of antiderivative = 0.96, number of steps used = 3, number of rules used = 2, integrand size = 51, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.039, Rules used = {12, 6706} \begin {gather*} -\frac {1}{25} e^{2 x^3+\frac {e^x x}{\log (5)}}-x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 6706
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {\int \left (-25 \log (5)+e^{\frac {e^x x+2 x^3 \log (5)}{\log (5)}} \left (e^x (-1-x)-6 x^2 \log (5)\right )\right ) \, dx}{25 \log (5)}\\ &=-x+\frac {\int e^{\frac {e^x x+2 x^3 \log (5)}{\log (5)}} \left (e^x (-1-x)-6 x^2 \log (5)\right ) \, dx}{25 \log (5)}\\ &=-\frac {1}{25} e^{2 x^3+\frac {e^x x}{\log (5)}}-x\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.46, size = 25, normalized size = 0.96 \begin {gather*} -\frac {1}{25} e^{2 x^3+\frac {e^x x}{\log (5)}}-x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.54, size = 24, normalized size = 0.92 \begin {gather*} -x - \frac {1}{25} \, e^{\left (\frac {2 \, x^{3} \log \relax (5) + x e^{x}}{\log \relax (5)}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.23, size = 30, normalized size = 1.15 \begin {gather*} -\frac {25 \, x \log \relax (5) + e^{\left (2 \, x^{3} + \frac {x e^{x}}{\log \relax (5)}\right )} \log \relax (5)}{25 \, \log \relax (5)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.12, size = 24, normalized size = 0.92
method | result | size |
risch | \(-x -\frac {{\mathrm e}^{\frac {x \left (2 x^{2} \ln \relax (5)+{\mathrm e}^{x}\right )}{\ln \relax (5)}}}{25}\) | \(24\) |
norman | \(-x -\frac {{\mathrm e}^{\frac {{\mathrm e}^{x} x +2 x^{3} \ln \relax (5)}{\ln \relax (5)}}}{25}\) | \(25\) |
default | \(\frac {-\ln \relax (5) {\mathrm e}^{\frac {{\mathrm e}^{x} x +2 x^{3} \ln \relax (5)}{\ln \relax (5)}}-25 x \ln \relax (5)}{25 \ln \relax (5)}\) | \(35\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.52, size = 30, normalized size = 1.15 \begin {gather*} -\frac {25 \, x \log \relax (5) + e^{\left (2 \, x^{3} + \frac {x e^{x}}{\log \relax (5)}\right )} \log \relax (5)}{25 \, \log \relax (5)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.17, size = 21, normalized size = 0.81 \begin {gather*} -x-\frac {{\mathrm {e}}^{2\,x^3}\,{\mathrm {e}}^{\frac {x\,{\mathrm {e}}^x}{\ln \relax (5)}}}{25} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.24, size = 22, normalized size = 0.85 \begin {gather*} - x - \frac {e^{\frac {2 x^{3} \log {\relax (5 )} + x e^{x}}{\log {\relax (5 )}}}}{25} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________