Optimal. Leaf size=24 \[ \frac {5 \left (-x^2+\frac {25}{9} x^{2+2 x}\right )}{2 x} \]
________________________________________________________________________________________
Rubi [F] time = 0.13, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {25}{18} x^{2 x} \left (5+10 x-\frac {9 x^{-2 x}}{5}+10 x \log (x)\right ) \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {25}{18} \int x^{2 x} \left (5+10 x-\frac {9 x^{-2 x}}{5}+10 x \log (x)\right ) \, dx\\ &=\frac {25}{18} \int \left (-\frac {9}{5}+5 x^{2 x}+10 x^{1+2 x}+10 x^{1+2 x} \log (x)\right ) \, dx\\ &=-\frac {5 x}{2}+\frac {125}{18} \int x^{2 x} \, dx+\frac {125}{9} \int x^{1+2 x} \, dx+\frac {125}{9} \int x^{1+2 x} \log (x) \, dx\\ &=-\frac {5 x}{2}+\frac {125}{18} \int x^{2 x} \, dx+\frac {125}{9} \int x^{1+2 x} \, dx-\frac {125}{9} \int \frac {\int x^{1+2 x} \, dx}{x} \, dx+\frac {1}{9} (125 \log (x)) \int x^{1+2 x} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.06, size = 19, normalized size = 0.79 \begin {gather*} \frac {25}{18} \left (-\frac {9 x}{5}+5 x^{1+2 x}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.76, size = 18, normalized size = 0.75 \begin {gather*} \frac {5}{2} \, x e^{\left (2 \, x \log \relax (x) - 2 \, \log \left (\frac {3}{5}\right )\right )} - \frac {5}{2} \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.22, size = 12, normalized size = 0.50 \begin {gather*} \frac {125}{18} \, x x^{2 \, x} - \frac {5}{2} \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 15, normalized size = 0.62
method | result | size |
risch | \(-\frac {5 x}{2}+\frac {125 x \,x^{2 x}}{18}\) | \(15\) |
default | \(-\frac {5 x}{2}+\frac {125 x \,{\mathrm e}^{2 x \ln \relax (x )}}{18}\) | \(19\) |
norman | \(\frac {25 \left (\frac {5 x}{2}-\frac {9 x \,{\mathrm e}^{-2 x \ln \relax (x )}}{10}\right ) {\mathrm e}^{2 x \ln \relax (x )}}{9}\) | \(31\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.57, size = 12, normalized size = 0.50 \begin {gather*} \frac {125}{18} \, x x^{2 \, x} - \frac {5}{2} \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.57, size = 12, normalized size = 0.50 \begin {gather*} \frac {5\,x\,\left (25\,x^{2\,x}-9\right )}{18} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.35, size = 17, normalized size = 0.71 \begin {gather*} \frac {125 x e^{2 x \log {\relax (x )}}}{18} - \frac {5 x}{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________