3.77.5 \(\int \frac {-40-8 x-8 x^2+(-40+2 x+14 x^2+6 x^3+4 x^4) \log (x)+(8+(8-2 x-4 x^2) \log (x)) \log (x^4 \log ^4(x))}{x \log (x)} \, dx\)

Optimal. Leaf size=19 \[ \left (5+x+x^2-\log \left (x^4 \log ^4(x)\right )\right )^2 \]

________________________________________________________________________________________

Rubi [A]  time = 0.20, antiderivative size = 19, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 66, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.045, Rules used = {6688, 12, 6686} \begin {gather*} \left (-\log \left (x^4 \log ^4(x)\right )+x^2+x+5\right )^2 \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(-40 - 8*x - 8*x^2 + (-40 + 2*x + 14*x^2 + 6*x^3 + 4*x^4)*Log[x] + (8 + (8 - 2*x - 4*x^2)*Log[x])*Log[x^4*
Log[x]^4])/(x*Log[x]),x]

[Out]

(5 + x + x^2 - Log[x^4*Log[x]^4])^2

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 6686

Int[(u_)*(y_)^(m_.), x_Symbol] :> With[{q = DerivativeDivides[y, u, x]}, Simp[(q*y^(m + 1))/(m + 1), x] /;  !F
alseQ[q]] /; FreeQ[m, x] && NeQ[m, -1]

Rule 6688

Int[u_, x_Symbol] :> With[{v = SimplifyIntegrand[u, x]}, Int[v, x] /; SimplerIntegrandQ[v, u, x]]

Rubi steps

\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {2 \left (4-\left (-4+x+2 x^2\right ) \log (x)\right ) \left (-5-x-x^2+\log \left (x^4 \log ^4(x)\right )\right )}{x \log (x)} \, dx\\ &=2 \int \frac {\left (4-\left (-4+x+2 x^2\right ) \log (x)\right ) \left (-5-x-x^2+\log \left (x^4 \log ^4(x)\right )\right )}{x \log (x)} \, dx\\ &=\left (5+x+x^2-\log \left (x^4 \log ^4(x)\right )\right )^2\\ \end {aligned} \end {gather*}

________________________________________________________________________________________

Mathematica [A]  time = 0.02, size = 19, normalized size = 1.00 \begin {gather*} \left (5+x+x^2-\log \left (x^4 \log ^4(x)\right )\right )^2 \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(-40 - 8*x - 8*x^2 + (-40 + 2*x + 14*x^2 + 6*x^3 + 4*x^4)*Log[x] + (8 + (8 - 2*x - 4*x^2)*Log[x])*Lo
g[x^4*Log[x]^4])/(x*Log[x]),x]

[Out]

(5 + x + x^2 - Log[x^4*Log[x]^4])^2

________________________________________________________________________________________

fricas [B]  time = 1.10, size = 45, normalized size = 2.37 \begin {gather*} x^{4} + 2 \, x^{3} + 11 \, x^{2} - 2 \, {\left (x^{2} + x + 5\right )} \log \left (x^{4} \log \relax (x)^{4}\right ) + \log \left (x^{4} \log \relax (x)^{4}\right )^{2} + 10 \, x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((-4*x^2-2*x+8)*log(x)+8)*log(x^4*log(x)^4)+(4*x^4+6*x^3+14*x^2+2*x-40)*log(x)-8*x^2-8*x-40)/x/log(
x),x, algorithm="fricas")

[Out]

x^4 + 2*x^3 + 11*x^2 - 2*(x^2 + x + 5)*log(x^4*log(x)^4) + log(x^4*log(x)^4)^2 + 10*x

________________________________________________________________________________________

giac [B]  time = 0.27, size = 64, normalized size = 3.37 \begin {gather*} x^{4} + 2 \, x^{3} + 11 \, x^{2} - 2 \, {\left (x^{2} + x - 4 \, \log \relax (x)\right )} \log \left (\log \relax (x)^{4}\right ) + \log \left (\log \relax (x)^{4}\right )^{2} - 8 \, {\left (x^{2} + x\right )} \log \relax (x) + 16 \, \log \relax (x)^{2} + 10 \, x - 40 \, \log \relax (x) - 40 \, \log \left (\log \relax (x)\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((-4*x^2-2*x+8)*log(x)+8)*log(x^4*log(x)^4)+(4*x^4+6*x^3+14*x^2+2*x-40)*log(x)-8*x^2-8*x-40)/x/log(
x),x, algorithm="giac")

[Out]

x^4 + 2*x^3 + 11*x^2 - 2*(x^2 + x - 4*log(x))*log(log(x)^4) + log(log(x)^4)^2 - 8*(x^2 + x)*log(x) + 16*log(x)
^2 + 10*x - 40*log(x) - 40*log(log(x))

________________________________________________________________________________________

maple [C]  time = 0.33, size = 2347, normalized size = 123.53




method result size



risch \(\text {Expression too large to display}\) \(2347\)



Verification of antiderivative is not currently implemented for this CAS.

[In]

int((((-4*x^2-2*x+8)*ln(x)+8)*ln(x^4*ln(x)^4)+(4*x^4+6*x^3+14*x^2+2*x-40)*ln(x)-8*x^2-8*x-40)/x/ln(x),x,method
=_RETURNVERBOSE)

[Out]

10*x-8*x^2*ln(x)+16*ln(ln(x))^2-40*ln(ln(x))-40*ln(x)+16*ln(x)^2+x^4+2*x^3+11*x^2-8*x*ln(x)+I*Pi*x^2*csgn(I*ln
(x)^4)^3+I*Pi*x^2*csgn(I*x^4*ln(x)^4)^3+I*Pi*x^2*csgn(I*x^2)^3+I*Pi*x^2*csgn(I*x^3)^3+I*Pi*x^2*csgn(I*x^4)^3+I
*Pi*x^2*csgn(I*ln(x)^2)^3+I*Pi*x^2*csgn(I*ln(x)^3)^3+I*Pi*x*csgn(I*ln(x)^4)^3+I*Pi*x*csgn(I*x^4*ln(x)^4)^3+I*P
i*x*csgn(I*x^3)^3+I*Pi*x*csgn(I*x^4)^3+I*Pi*x*csgn(I*ln(x)^2)^3+I*Pi*x*csgn(I*x^2)^3-4*I*Pi*ln(ln(x))*csgn(I*l
n(x)^4)^3-4*I*Pi*ln(ln(x))*csgn(I*x^4*ln(x)^4)^3-4*I*Pi*ln(ln(x))*csgn(I*x^2)^3-4*I*Pi*ln(ln(x))*csgn(I*x^3)^3
-4*I*Pi*ln(ln(x))*csgn(I*x^4)^3-4*I*Pi*ln(ln(x))*csgn(I*ln(x)^2)^3-4*I*Pi*ln(ln(x))*csgn(I*ln(x)^3)^3-4*I*Pi*l
n(x)*csgn(I*ln(x)^3)^3-4*I*Pi*ln(x)*csgn(I*ln(x)^4)^3-4*I*Pi*ln(x)*csgn(I*x^4*ln(x)^4)^3-4*I*Pi*ln(x)*csgn(I*x
^2)^3-4*I*Pi*ln(x)*csgn(I*ln(x)^2)^3+I*Pi*x*csgn(I*ln(x)^3)^3-4*I*Pi*ln(x)*csgn(I*x^3)^3-4*I*Pi*ln(x)*csgn(I*x
^4)^3-4*I*Pi*ln(x)*csgn(I*x)*csgn(I*x^2)*csgn(I*x^3)-4*I*Pi*ln(x)*csgn(I*x)*csgn(I*x^3)*csgn(I*x^4)-4*I*Pi*ln(
x)*csgn(I*ln(x))*csgn(I*ln(x)^2)*csgn(I*ln(x)^3)-4*I*Pi*ln(ln(x))*csgn(I*ln(x)^4)*csgn(I*x^4*ln(x)^4)*csgn(I*x
^4)-4*I*Pi*ln(ln(x))*csgn(I*ln(x)^4)*csgn(I*ln(x))*csgn(I*ln(x)^3)-4*I*Pi*ln(ln(x))*csgn(I*x)*csgn(I*x^2)*csgn
(I*x^3)-4*I*Pi*ln(ln(x))*csgn(I*x)*csgn(I*x^3)*csgn(I*x^4)-4*I*Pi*ln(ln(x))*csgn(I*ln(x))*csgn(I*ln(x)^2)*csgn
(I*ln(x)^3)+I*Pi*x*csgn(I*ln(x)^4)*csgn(I*ln(x))*csgn(I*ln(x)^3)+I*Pi*x*csgn(I*x)*csgn(I*x^2)*csgn(I*x^3)+I*Pi
*x*csgn(I*x)*csgn(I*x^3)*csgn(I*x^4)+(-8*x^2-8*x+32*ln(x))*ln(ln(x))+4*I*Pi*ln(x)*csgn(I*x)*csgn(I*x^4)^2+4*I*
Pi*ln(x)*csgn(I*x^2)*csgn(I*x^3)^2-4*I*Pi*ln(x)*csgn(I*ln(x))^2*csgn(I*ln(x)^2)+8*I*Pi*ln(x)*csgn(I*ln(x))*csg
n(I*ln(x)^2)^2+4*I*Pi*ln(x)*csgn(I*ln(x))*csgn(I*ln(x)^3)^2+4*I*Pi*ln(x)*csgn(I*ln(x)^2)*csgn(I*ln(x)^3)^2+4*I
*Pi*ln(ln(x))*csgn(I*ln(x)^4)*csgn(I*x^4*ln(x)^4)^2+4*I*Pi*ln(ln(x))*csgn(I*x^4*ln(x)^4)^2*csgn(I*x^4)-4*I*Pi*
ln(ln(x))*csgn(I*x)^2*csgn(I*x^2)-2*I*Pi*x*csgn(I*x)*csgn(I*x^2)^2+4*I*Pi*ln(x)*csgn(I*x^3)*csgn(I*x^4)^2+I*Pi
*x*csgn(I*ln(x))*csgn(I*ln(x)^2)*csgn(I*ln(x)^3)+I*Pi*x^2*csgn(I*ln(x)^4)*csgn(I*x^4*ln(x)^4)*csgn(I*x^4)+I*Pi
*x^2*csgn(I*ln(x)^4)*csgn(I*ln(x))*csgn(I*ln(x)^3)+I*Pi*x^2*csgn(I*x)*csgn(I*x^2)*csgn(I*x^3)+I*Pi*x^2*csgn(I*
x)*csgn(I*x^3)*csgn(I*x^4)+I*Pi*x^2*csgn(I*ln(x))*csgn(I*ln(x)^2)*csgn(I*ln(x)^3)+I*Pi*x*csgn(I*ln(x)^4)*csgn(
I*x^4*ln(x)^4)*csgn(I*x^4)-4*I*Pi*ln(x)*csgn(I*ln(x)^4)*csgn(I*x^4*ln(x)^4)*csgn(I*x^4)-4*I*Pi*ln(x)*csgn(I*ln
(x)^4)*csgn(I*ln(x))*csgn(I*ln(x)^3)-I*Pi*x*csgn(I*x)*csgn(I*x^3)^2-I*Pi*x*csgn(I*x)*csgn(I*x^4)^2-I*Pi*x*csgn
(I*x^2)*csgn(I*x^3)^2-2*I*Pi*x*csgn(I*ln(x))*csgn(I*ln(x)^2)^2-I*Pi*x*csgn(I*ln(x))*csgn(I*ln(x)^3)^2-I*Pi*x*c
sgn(I*x^3)*csgn(I*x^4)^2-I*Pi*x*csgn(I*ln(x)^2)*csgn(I*ln(x)^3)^2-I*Pi*x^2*csgn(I*ln(x)^4)^2*csgn(I*ln(x))-I*P
i*x^2*csgn(I*ln(x)^4)^2*csgn(I*ln(x)^3)-I*Pi*x^2*csgn(I*ln(x)^4)*csgn(I*x^4*ln(x)^4)^2-I*Pi*x^2*csgn(I*x^4*ln(
x)^4)^2*csgn(I*x^4)+8*I*Pi*ln(ln(x))*csgn(I*x)*csgn(I*x^2)^2+4*I*Pi*ln(ln(x))*csgn(I*x)*csgn(I*x^3)^2+4*I*Pi*l
n(ln(x))*csgn(I*x)*csgn(I*x^4)^2+4*I*Pi*ln(ln(x))*csgn(I*x^2)*csgn(I*x^3)^2-4*I*Pi*ln(ln(x))*csgn(I*ln(x))^2*c
sgn(I*ln(x)^2)+8*I*Pi*ln(ln(x))*csgn(I*ln(x))*csgn(I*ln(x)^2)^2+4*I*Pi*ln(ln(x))*csgn(I*ln(x))*csgn(I*ln(x)^3)
^2+4*I*Pi*ln(ln(x))*csgn(I*x^3)*csgn(I*x^4)^2+4*I*Pi*ln(ln(x))*csgn(I*ln(x)^2)*csgn(I*ln(x)^3)^2+4*I*Pi*ln(ln(
x))*csgn(I*ln(x)^4)^2*csgn(I*ln(x))+4*I*Pi*ln(ln(x))*csgn(I*ln(x)^4)^2*csgn(I*ln(x)^3)-I*Pi*x*csgn(I*ln(x)^4)^
2*csgn(I*ln(x))-I*Pi*x*csgn(I*ln(x)^4)^2*csgn(I*ln(x)^3)-I*Pi*x*csgn(I*ln(x)^4)*csgn(I*x^4*ln(x)^4)^2-I*Pi*x*c
sgn(I*x^4*ln(x)^4)^2*csgn(I*x^4)+I*Pi*x*csgn(I*x)^2*csgn(I*x^2)+I*Pi*x^2*csgn(I*x)^2*csgn(I*x^2)+I*Pi*x^2*csgn
(I*ln(x))^2*csgn(I*ln(x)^2)+I*Pi*x*csgn(I*ln(x))^2*csgn(I*ln(x)^2)-2*I*Pi*x^2*csgn(I*x)*csgn(I*x^2)^2-I*Pi*x^2
*csgn(I*x)*csgn(I*x^3)^2-I*Pi*x^2*csgn(I*x)*csgn(I*x^4)^2-I*Pi*x^2*csgn(I*x^2)*csgn(I*x^3)^2-2*I*Pi*x^2*csgn(I
*ln(x))*csgn(I*ln(x)^2)^2-I*Pi*x^2*csgn(I*ln(x))*csgn(I*ln(x)^3)^2-I*Pi*x^2*csgn(I*x^3)*csgn(I*x^4)^2-I*Pi*x^2
*csgn(I*ln(x)^2)*csgn(I*ln(x)^3)^2+4*I*Pi*ln(x)*csgn(I*ln(x)^4)^2*csgn(I*ln(x))+4*I*Pi*ln(x)*csgn(I*ln(x)^4)^2
*csgn(I*ln(x)^3)+4*I*Pi*ln(x)*csgn(I*ln(x)^4)*csgn(I*x^4*ln(x)^4)^2+4*I*Pi*ln(x)*csgn(I*x^4*ln(x)^4)^2*csgn(I*
x^4)-4*I*Pi*ln(x)*csgn(I*x)^2*csgn(I*x^2)+8*I*Pi*ln(x)*csgn(I*x)*csgn(I*x^2)^2+4*I*Pi*ln(x)*csgn(I*x)*csgn(I*x
^3)^2

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} x^{4} + 2 \, x^{3} + 11 \, x^{2} - 8 \, {\left (x^{2} + x\right )} \log \relax (x) + 16 \, \log \relax (x)^{2} - 8 \, {\left (x^{2} + x - 4 \, \log \relax (x)\right )} \log \left (\log \relax (x)\right ) + 16 \, \log \left (\log \relax (x)\right )^{2} + 10 \, x - 8 \, {\rm Ei}\left (2 \, \log \relax (x)\right ) - 8 \, {\rm Ei}\left (\log \relax (x)\right ) + 2 \, \int \frac {4 \, {\left (x + 1\right )}}{\log \relax (x)}\,{d x} - 40 \, \log \relax (x) - 40 \, \log \left (\log \relax (x)\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((-4*x^2-2*x+8)*log(x)+8)*log(x^4*log(x)^4)+(4*x^4+6*x^3+14*x^2+2*x-40)*log(x)-8*x^2-8*x-40)/x/log(
x),x, algorithm="maxima")

[Out]

x^4 + 2*x^3 + 11*x^2 - 8*(x^2 + x)*log(x) + 16*log(x)^2 - 8*(x^2 + x - 4*log(x))*log(log(x)) + 16*log(log(x))^
2 + 10*x - 8*Ei(2*log(x)) - 8*Ei(log(x)) + 2*integrate(4*(x + 1)/log(x), x) - 40*log(x) - 40*log(log(x))

________________________________________________________________________________________

mupad [B]  time = 4.69, size = 57, normalized size = 3.00 \begin {gather*} 10\,x-40\,\ln \left (\ln \relax (x)\right )-40\,\ln \relax (x)+{\ln \left (x^4\,{\ln \relax (x)}^4\right )}^2-\ln \left (x^4\,{\ln \relax (x)}^4\right )\,\left (2\,x^2+2\,x\right )+11\,x^2+2\,x^3+x^4 \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-(8*x - log(x)*(2*x + 14*x^2 + 6*x^3 + 4*x^4 - 40) + log(x^4*log(x)^4)*(log(x)*(2*x + 4*x^2 - 8) - 8) + 8*
x^2 + 40)/(x*log(x)),x)

[Out]

10*x - 40*log(log(x)) - 40*log(x) + log(x^4*log(x)^4)^2 - log(x^4*log(x)^4)*(2*x + 2*x^2) + 11*x^2 + 2*x^3 + x
^4

________________________________________________________________________________________

sympy [B]  time = 0.47, size = 60, normalized size = 3.16 \begin {gather*} x^{4} + 2 x^{3} + 11 x^{2} + 10 x + \left (- 2 x^{2} - 2 x\right ) \log {\left (x^{4} \log {\relax (x )}^{4} \right )} - 40 \log {\relax (x )} + \log {\left (x^{4} \log {\relax (x )}^{4} \right )}^{2} - 40 \log {\left (\log {\relax (x )} \right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((-4*x**2-2*x+8)*ln(x)+8)*ln(x**4*ln(x)**4)+(4*x**4+6*x**3+14*x**2+2*x-40)*ln(x)-8*x**2-8*x-40)/x/l
n(x),x)

[Out]

x**4 + 2*x**3 + 11*x**2 + 10*x + (-2*x**2 - 2*x)*log(x**4*log(x)**4) - 40*log(x) + log(x**4*log(x)**4)**2 - 40
*log(log(x))

________________________________________________________________________________________