Optimal. Leaf size=28 \[ 10 \left (5+e^{6-\frac {2 \log (i \pi +\log (2))}{-e^2+x}}\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.10, antiderivative size = 25, normalized size of antiderivative = 0.89, number of steps used = 4, number of rules used = 4, integrand size = 57, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.070, Rules used = {12, 27, 2230, 2209} \begin {gather*} 10 e^6 (\log (2)+i \pi )^{\frac {2}{e^2-x}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 27
Rule 2209
Rule 2230
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=(20 \log (i \pi +\log (2))) \int \frac {\exp \left (\frac {2 \left (3 e^2-3 x+\log (i \pi +\log (2))\right )}{e^2-x}\right )}{e^4-2 e^2 x+x^2} \, dx\\ &=(20 \log (i \pi +\log (2))) \int \frac {\exp \left (\frac {2 \left (3 e^2-3 x+\log (i \pi +\log (2))\right )}{e^2-x}\right )}{\left (-e^2+x\right )^2} \, dx\\ &=(20 \log (i \pi +\log (2))) \int \frac {e^{6-\frac {2 \log (i \pi +\log (2))}{-e^2+x}}}{\left (-e^2+x\right )^2} \, dx\\ &=10 e^6 (i \pi +\log (2))^{\frac {2}{e^2-x}}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 25, normalized size = 0.89 \begin {gather*} 10 e^6 (i \pi +\log (2))^{\frac {2}{e^2-x}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.01, size = 89, normalized size = 3.18 \begin {gather*} 10 \, {\left (\cosh \left (-\frac {3 \, x}{x - e^{2}} + \frac {3 \, e^{2}}{x - e^{2}} + \frac {\log \left (i \, \pi + \log \relax (2)\right )}{x - e^{2}}\right ) - \sinh \left (-\frac {3 \, x}{x - e^{2}} + \frac {3 \, e^{2}}{x - e^{2}} + \frac {\log \left (i \, \pi + \log \relax (2)\right )}{x - e^{2}}\right )\right )}^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {20 \, {\left (\cosh \left (-\frac {3 \, x}{x - e^{2}} + \frac {3 \, e^{2}}{x - e^{2}} + \frac {\log \left (i \, \pi + \log \relax (2)\right )}{x - e^{2}}\right ) - \sinh \left (-\frac {3 \, x}{x - e^{2}} + \frac {3 \, e^{2}}{x - e^{2}} + \frac {\log \left (i \, \pi + \log \relax (2)\right )}{x - e^{2}}\right )\right )}^{2} \log \left (i \, \pi + \log \relax (2)\right )}{x^{2} - 2 \, x e^{2} + e^{4}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.28, size = 26, normalized size = 0.93
method | result | size |
derivativedivides | \(10 \,{\mathrm e}^{6-\frac {2 \ln \left (\ln \relax (2)+i \pi \right )}{x -{\mathrm e}^{2}}}\) | \(26\) |
default | \(10 \,{\mathrm e}^{6-\frac {2 \ln \left (\ln \relax (2)+i \pi \right )}{x -{\mathrm e}^{2}}}\) | \(26\) |
risch | \(10 \left (i \left (-i \ln \relax (2)+\pi \right )\right )^{\frac {2}{{\mathrm e}^{2}-x}} {\mathrm e}^{6}\) | \(26\) |
norman | \(\frac {-10 x \,{\mathrm e}^{\frac {2 \ln \left (\ln \relax (2)+i \pi \right )+6 \,{\mathrm e}^{2}-6 x}{{\mathrm e}^{2}-x}}+10 \,{\mathrm e}^{2} {\mathrm e}^{\frac {2 \ln \left (\ln \relax (2)+i \pi \right )+6 \,{\mathrm e}^{2}-6 x}{{\mathrm e}^{2}-x}}}{{\mathrm e}^{2}-x}\) | \(74\) |
gosper | error in isolve/isolve: invalid subscript selector\ | N/A |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.57, size = 45, normalized size = 1.61 \begin {gather*} 10 \, \cosh \left (\frac {2 \, \log \left (i \, \pi + \log \relax (2)\right )}{x - e^{2}} - 6\right ) - 10 \, \sinh \left (\frac {2 \, \log \left (i \, \pi + \log \relax (2)\right )}{x - e^{2}} - 6\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.11, size = 24, normalized size = 0.86 \begin {gather*} \frac {10\,{\mathrm {e}}^6}{{\left (\ln \relax (2)+\Pi \,1{}\mathrm {i}\right )}^{\frac {2}{x-{\mathrm {e}}^2}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 27.81, size = 26, normalized size = 0.93 \begin {gather*} 10 e^{\frac {2 \left (- 3 x + 3 e^{2} + \log {\left (\log {\relax (2 )} + i \pi \right )}\right )}{- x + e^{2}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________