Optimal. Leaf size=25 \[ \log \left (\frac {e^{x^2}}{5 x^2}-\log \left (4+e^{2 x}+x\right )\right ) \]
________________________________________________________________________________________
Rubi [F] time = 11.08, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {5 x^3+10 e^{2 x} x^3+e^{x^2} \left (8+2 x-8 x^2-2 x^3+e^{2 x} \left (2-2 x^2\right )\right )}{e^{x^2} \left (-4 x-e^{2 x} x-x^2\right )+\left (20 x^3+5 e^{2 x} x^3+5 x^4\right ) \log \left (4+e^{2 x}+x\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-5 x^3-10 e^{2 x} x^3-e^{x^2} \left (8+2 x-8 x^2-2 x^3+e^{2 x} \left (2-2 x^2\right )\right )}{x \left (4+e^{2 x}+x\right ) \left (e^{x^2}-5 x^2 \log \left (4+e^{2 x}+x\right )\right )} \, dx\\ &=\int \frac {-5 x^3-10 e^{2 x} x^3+2 e^{x^2} \left (4+e^{2 x}+x\right ) \left (-1+x^2\right )}{x \left (4+e^{2 x}+x\right ) \left (e^{x^2}-5 x^2 \log \left (4+e^{2 x}+x\right )\right )} \, dx\\ &=\int \left (\frac {2 \left (-1+x^2\right )}{x}-\frac {5 x \left (-x-2 e^{2 x} x-8 \log \left (4+e^{2 x}+x\right )-2 e^{2 x} \log \left (4+e^{2 x}+x\right )-2 x \log \left (4+e^{2 x}+x\right )+8 x^2 \log \left (4+e^{2 x}+x\right )+2 e^{2 x} x^2 \log \left (4+e^{2 x}+x\right )+2 x^3 \log \left (4+e^{2 x}+x\right )\right )}{\left (4+e^{2 x}+x\right ) \left (-e^{x^2}+5 x^2 \log \left (4+e^{2 x}+x\right )\right )}\right ) \, dx\\ &=2 \int \frac {-1+x^2}{x} \, dx-5 \int \frac {x \left (-x-2 e^{2 x} x-8 \log \left (4+e^{2 x}+x\right )-2 e^{2 x} \log \left (4+e^{2 x}+x\right )-2 x \log \left (4+e^{2 x}+x\right )+8 x^2 \log \left (4+e^{2 x}+x\right )+2 e^{2 x} x^2 \log \left (4+e^{2 x}+x\right )+2 x^3 \log \left (4+e^{2 x}+x\right )\right )}{\left (4+e^{2 x}+x\right ) \left (-e^{x^2}+5 x^2 \log \left (4+e^{2 x}+x\right )\right )} \, dx\\ &=2 \int \left (-\frac {1}{x}+x\right ) \, dx-5 \int \frac {x \left (\left (1+2 e^{2 x}\right ) x-2 \left (4+e^{2 x}+x\right ) \left (-1+x^2\right ) \log \left (4+e^{2 x}+x\right )\right )}{\left (4+e^{2 x}+x\right ) \left (e^{x^2}-5 x^2 \log \left (4+e^{2 x}+x\right )\right )} \, dx\\ &=x^2-2 \log (x)-5 \int \left (-\frac {x^2}{\left (4+e^{2 x}+x\right ) \left (-e^{x^2}+5 x^2 \log \left (4+e^{2 x}+x\right )\right )}-\frac {2 e^{2 x} x^2}{\left (4+e^{2 x}+x\right ) \left (-e^{x^2}+5 x^2 \log \left (4+e^{2 x}+x\right )\right )}-\frac {8 x \log \left (4+e^{2 x}+x\right )}{\left (4+e^{2 x}+x\right ) \left (-e^{x^2}+5 x^2 \log \left (4+e^{2 x}+x\right )\right )}-\frac {2 e^{2 x} x \log \left (4+e^{2 x}+x\right )}{\left (4+e^{2 x}+x\right ) \left (-e^{x^2}+5 x^2 \log \left (4+e^{2 x}+x\right )\right )}-\frac {2 x^2 \log \left (4+e^{2 x}+x\right )}{\left (4+e^{2 x}+x\right ) \left (-e^{x^2}+5 x^2 \log \left (4+e^{2 x}+x\right )\right )}+\frac {8 x^3 \log \left (4+e^{2 x}+x\right )}{\left (4+e^{2 x}+x\right ) \left (-e^{x^2}+5 x^2 \log \left (4+e^{2 x}+x\right )\right )}+\frac {2 e^{2 x} x^3 \log \left (4+e^{2 x}+x\right )}{\left (4+e^{2 x}+x\right ) \left (-e^{x^2}+5 x^2 \log \left (4+e^{2 x}+x\right )\right )}+\frac {2 x^4 \log \left (4+e^{2 x}+x\right )}{\left (4+e^{2 x}+x\right ) \left (-e^{x^2}+5 x^2 \log \left (4+e^{2 x}+x\right )\right )}\right ) \, dx\\ &=x^2-2 \log (x)+5 \int \frac {x^2}{\left (4+e^{2 x}+x\right ) \left (-e^{x^2}+5 x^2 \log \left (4+e^{2 x}+x\right )\right )} \, dx+10 \int \frac {e^{2 x} x^2}{\left (4+e^{2 x}+x\right ) \left (-e^{x^2}+5 x^2 \log \left (4+e^{2 x}+x\right )\right )} \, dx+10 \int \frac {e^{2 x} x \log \left (4+e^{2 x}+x\right )}{\left (4+e^{2 x}+x\right ) \left (-e^{x^2}+5 x^2 \log \left (4+e^{2 x}+x\right )\right )} \, dx+10 \int \frac {x^2 \log \left (4+e^{2 x}+x\right )}{\left (4+e^{2 x}+x\right ) \left (-e^{x^2}+5 x^2 \log \left (4+e^{2 x}+x\right )\right )} \, dx-10 \int \frac {e^{2 x} x^3 \log \left (4+e^{2 x}+x\right )}{\left (4+e^{2 x}+x\right ) \left (-e^{x^2}+5 x^2 \log \left (4+e^{2 x}+x\right )\right )} \, dx-10 \int \frac {x^4 \log \left (4+e^{2 x}+x\right )}{\left (4+e^{2 x}+x\right ) \left (-e^{x^2}+5 x^2 \log \left (4+e^{2 x}+x\right )\right )} \, dx+40 \int \frac {x \log \left (4+e^{2 x}+x\right )}{\left (4+e^{2 x}+x\right ) \left (-e^{x^2}+5 x^2 \log \left (4+e^{2 x}+x\right )\right )} \, dx-40 \int \frac {x^3 \log \left (4+e^{2 x}+x\right )}{\left (4+e^{2 x}+x\right ) \left (-e^{x^2}+5 x^2 \log \left (4+e^{2 x}+x\right )\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.10, size = 38, normalized size = 1.52 \begin {gather*} -2 x-2 \log (x)+\log \left (e^{2 x+x^2}-5 e^{2 x} x^2 \log \left (4+e^{2 x}+x\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.56, size = 25, normalized size = 1.00 \begin {gather*} \log \left (\frac {5 \, x^{2} \log \left (x + e^{\left (2 \, x\right )} + 4\right ) - e^{\left (x^{2}\right )}}{x^{2}}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.57, size = 24, normalized size = 0.96 \begin {gather*} \log \left (-5 \, x^{2} \log \left (x + e^{\left (2 \, x\right )} + 4\right ) + e^{\left (x^{2}\right )}\right ) - 2 \, \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 20, normalized size = 0.80
method | result | size |
risch | \(\ln \left (\ln \left ({\mathrm e}^{2 x}+4+x \right )-\frac {{\mathrm e}^{x^{2}}}{5 x^{2}}\right )\) | \(20\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.83, size = 26, normalized size = 1.04 \begin {gather*} \log \left (\frac {5 \, x^{2} \log \left (x + e^{\left (2 \, x\right )} + 4\right ) - e^{\left (x^{2}\right )}}{5 \, x^{2}}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.76, size = 26, normalized size = 1.04 \begin {gather*} \ln \left (5\,x^2\,\ln \left (x+{\mathrm {e}}^{2\,x}+4\right )-{\mathrm {e}}^{x^2}\right )+\ln \left (\frac {1}{x^2}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.92, size = 20, normalized size = 0.80 \begin {gather*} \log {\left (\log {\left (x + e^{2 x} + 4 \right )} - \frac {e^{x^{2}}}{5 x^{2}} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________