Optimal. Leaf size=31 \[ 5+\frac {e^{\frac {e^{-x} x}{15}} \left (-e^{3+3 x}+\log (x)\right )}{\log (2)} \]
________________________________________________________________________________________
Rubi [F] time = 1.06, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{-x+\frac {e^{-x} x}{15}} \left (15 e^x+e^{3+3 x} \left (-x-45 e^x x+x^2\right )+\left (x-x^2\right ) \log (x)\right )}{15 x \log (2)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {\int \frac {e^{-x+\frac {e^{-x} x}{15}} \left (15 e^x+e^{3+3 x} \left (-x-45 e^x x+x^2\right )+\left (x-x^2\right ) \log (x)\right )}{x} \, dx}{15 \log (2)}\\ &=\frac {\int \left (-45 e^{3+3 x+\frac {e^{-x} x}{15}}+e^{3+2 x+\frac {e^{-x} x}{15}} (-1+x)+\frac {15 e^{\frac {e^{-x} x}{15}}}{x}-e^{-x+\frac {e^{-x} x}{15}} (-1+x) \log (x)\right ) \, dx}{15 \log (2)}\\ &=\frac {\int e^{3+2 x+\frac {e^{-x} x}{15}} (-1+x) \, dx}{15 \log (2)}-\frac {\int e^{-x+\frac {e^{-x} x}{15}} (-1+x) \log (x) \, dx}{15 \log (2)}+\frac {\int \frac {e^{\frac {e^{-x} x}{15}}}{x} \, dx}{\log (2)}-\frac {3 \int e^{3+3 x+\frac {e^{-x} x}{15}} \, dx}{\log (2)}\\ &=\frac {\int \left (-e^{3+2 x+\frac {e^{-x} x}{15}}+e^{3+2 x+\frac {e^{-x} x}{15}} x\right ) \, dx}{15 \log (2)}+\frac {\int \frac {-\int e^{\frac {1}{15} \left (-15+e^{-x}\right ) x} \, dx+\int e^{\frac {1}{15} \left (-15+e^{-x}\right ) x} x \, dx}{x} \, dx}{15 \log (2)}+\frac {\int \frac {e^{\frac {e^{-x} x}{15}}}{x} \, dx}{\log (2)}-\frac {3 \int e^{3+3 x+\frac {e^{-x} x}{15}} \, dx}{\log (2)}+\frac {\log (x) \int e^{-x+\frac {e^{-x} x}{15}} \, dx}{15 \log (2)}-\frac {\log (x) \int e^{-x+\frac {e^{-x} x}{15}} x \, dx}{15 \log (2)}\\ &=-\frac {\int e^{3+2 x+\frac {e^{-x} x}{15}} \, dx}{15 \log (2)}+\frac {\int e^{3+2 x+\frac {e^{-x} x}{15}} x \, dx}{15 \log (2)}+\frac {\int \left (-\frac {\int e^{\frac {1}{15} \left (-15+e^{-x}\right ) x} \, dx}{x}+\frac {\int e^{\frac {1}{15} \left (-15+e^{-x}\right ) x} x \, dx}{x}\right ) \, dx}{15 \log (2)}+\frac {\int \frac {e^{\frac {e^{-x} x}{15}}}{x} \, dx}{\log (2)}-\frac {3 \int e^{3+3 x+\frac {e^{-x} x}{15}} \, dx}{\log (2)}+\frac {\log (x) \int e^{-x+\frac {e^{-x} x}{15}} \, dx}{15 \log (2)}-\frac {\log (x) \int e^{-x+\frac {e^{-x} x}{15}} x \, dx}{15 \log (2)}\\ &=-\frac {\int e^{3+2 x+\frac {e^{-x} x}{15}} \, dx}{15 \log (2)}+\frac {\int e^{3+2 x+\frac {e^{-x} x}{15}} x \, dx}{15 \log (2)}-\frac {\int \frac {\int e^{\frac {1}{15} \left (-15+e^{-x}\right ) x} \, dx}{x} \, dx}{15 \log (2)}+\frac {\int \frac {\int e^{\frac {1}{15} \left (-15+e^{-x}\right ) x} x \, dx}{x} \, dx}{15 \log (2)}+\frac {\int \frac {e^{\frac {e^{-x} x}{15}}}{x} \, dx}{\log (2)}-\frac {3 \int e^{3+3 x+\frac {e^{-x} x}{15}} \, dx}{\log (2)}+\frac {\log (x) \int e^{-x+\frac {e^{-x} x}{15}} \, dx}{15 \log (2)}-\frac {\log (x) \int e^{-x+\frac {e^{-x} x}{15}} x \, dx}{15 \log (2)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.57, size = 34, normalized size = 1.10 \begin {gather*} \frac {e^{\frac {e^{-x} x}{15}} \left (-15 e^{3+3 x}+15 \log (x)\right )}{15 \log (2)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.57, size = 35, normalized size = 1.13 \begin {gather*} \frac {{\left (e^{x} \log \relax (x) - e^{\left (4 \, x + 3\right )}\right )} e^{\left (-\frac {1}{15} \, {\left (15 \, x e^{x} - x\right )} e^{\left (-x\right )}\right )}}{\log \relax (2)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {{\left ({\left (x^{2} - 45 \, x e^{x} - x\right )} e^{\left (3 \, x + 3\right )} - {\left (x^{2} - x\right )} \log \relax (x) + 15 \, e^{x}\right )} e^{\left (\frac {1}{15} \, x e^{\left (-x\right )} - x\right )}}{15 \, x \log \relax (2)}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.08, size = 28, normalized size = 0.90
method | result | size |
risch | \(\frac {\left (-15 \,{\mathrm e}^{3 x +3}+15 \ln \relax (x )\right ) {\mathrm e}^{\frac {x \,{\mathrm e}^{-x}}{15}}}{15 \ln \relax (2)}\) | \(28\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} -\frac {-15 \, e^{\left (\frac {1}{15} \, x e^{\left (-x\right )}\right )} \log \relax (x) + 15 \, e^{\left (\frac {1}{15} \, x e^{\left (-x\right )} + 3 \, x + 3\right )}}{15 \, \log \relax (2)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.03 \begin {gather*} \int \frac {{\mathrm {e}}^{\frac {x\,{\mathrm {e}}^{-x}}{15}-x}\,\left (15\,{\mathrm {e}}^x+\ln \relax (x)\,\left (x-x^2\right )-{\mathrm {e}}^{3\,x+3}\,\left (x+45\,x\,{\mathrm {e}}^x-x^2\right )\right )}{15\,x\,\ln \relax (2)} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.40, size = 27, normalized size = 0.87 \begin {gather*} \frac {\left (- e^{3} + e^{- 3 x} \log {\relax (x )}\right ) e^{3 x} e^{\frac {x e^{- x}}{15}}}{\log {\relax (2 )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________