Optimal. Leaf size=32 \[ \frac {3 \left (5+\frac {3-x}{5}\right )}{(-5+2 x) (-4+x (x-\log (4)))} \]
________________________________________________________________________________________
Rubi [A] time = 0.27, antiderivative size = 57, normalized size of antiderivative = 1.78, number of steps used = 7, number of rules used = 4, integrand size = 109, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.037, Rules used = {2074, 618, 206, 638} \begin {gather*} \frac {3 (51 x+4 (33-14 \log (4)))}{5 (9-10 \log (4)) \left (-x^2+x \log (4)+4\right )}-\frac {306}{5 (5-2 x) (9-10 \log (4))} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 206
Rule 618
Rule 638
Rule 2074
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {612}{5 (-5+2 x)^2 (-9+10 \log (4))}+\frac {153}{5 (-9+10 \log (4)) \left (4-x^2+x \log (4)\right )}+\frac {3 \left (x (264-61 \log (4))+4 \left (102-33 \log (4)+14 \log ^2(4)\right )\right )}{5 (9-10 \log (4)) \left (4-x^2+x \log (4)\right )^2}\right ) \, dx\\ &=-\frac {306}{5 (5-2 x) (9-10 \log (4))}+\frac {3 \int \frac {x (264-61 \log (4))+4 \left (102-33 \log (4)+14 \log ^2(4)\right )}{\left (4-x^2+x \log (4)\right )^2} \, dx}{5 (9-10 \log (4))}-\frac {153 \int \frac {1}{4-x^2+x \log (4)} \, dx}{5 (9-10 \log (4))}\\ &=-\frac {306}{5 (5-2 x) (9-10 \log (4))}+\frac {3 (51 x+4 (33-14 \log (4)))}{5 (9-10 \log (4)) \left (4-x^2+x \log (4)\right )}+\frac {153 \int \frac {1}{4-x^2+x \log (4)} \, dx}{5 (9-10 \log (4))}+\frac {306 \operatorname {Subst}\left (\int \frac {1}{16-x^2+\log ^2(4)} \, dx,x,-2 x+\log (4)\right )}{5 (9-10 \log (4))}\\ &=-\frac {306}{5 (5-2 x) (9-10 \log (4))}+\frac {3 (51 x+4 (33-14 \log (4)))}{5 (9-10 \log (4)) \left (4-x^2+x \log (4)\right )}-\frac {306 \tanh ^{-1}\left (\frac {2 x-\log (4)}{\sqrt {16+\log ^2(4)}}\right )}{5 (9-10 \log (4)) \sqrt {16+\log ^2(4)}}-\frac {306 \operatorname {Subst}\left (\int \frac {1}{16-x^2+\log ^2(4)} \, dx,x,-2 x+\log (4)\right )}{5 (9-10 \log (4))}\\ &=-\frac {306}{5 (5-2 x) (9-10 \log (4))}+\frac {3 (51 x+4 (33-14 \log (4)))}{5 (9-10 \log (4)) \left (4-x^2+x \log (4)\right )}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.11, size = 132, normalized size = 4.12 \begin {gather*} \frac {3 \left (x \left (-2240 \log ^4(4)+72 (-18+107 \log (16))+2 \log ^3(4) (2007+535 \log (16))+48 \log (4) (-261+589 \log (16))-\log ^2(4) (58225+1917 \log (16))\right )+4 \left (9072-5640 \log ^3(4)+700 \log ^4(4)+39280 \log (16)-5 \log (4) (19744+1129 \log (16))+\log ^2(4) (23057+2190 \log (16))\right )\right )}{5 (-5+2 x) (9-10 \log (4))^2 \left (-4+x^2-x \log (4)\right ) \left (16+\log ^2(4)\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.54, size = 35, normalized size = 1.09 \begin {gather*} -\frac {3 \, {\left (x - 28\right )}}{5 \, {\left (2 \, x^{3} - 5 \, x^{2} - 2 \, {\left (2 \, x^{2} - 5 \, x\right )} \log \relax (2) - 8 \, x + 20\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.17, size = 34, normalized size = 1.06 \begin {gather*} -\frac {3 \, {\left (x - 28\right )}}{5 \, {\left (2 \, x^{3} - 4 \, x^{2} \log \relax (2) - 5 \, x^{2} + 10 \, x \log \relax (2) - 8 \, x + 20\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.11, size = 28, normalized size = 0.88
method | result | size |
norman | \(\frac {\frac {3 x}{5}-\frac {84}{5}}{\left (2 x -5\right ) \left (2 x \ln \relax (2)-x^{2}+4\right )}\) | \(28\) |
gosper | \(\frac {\frac {3 x}{5}-\frac {84}{5}}{4 x^{2} \ln \relax (2)-2 x^{3}-10 x \ln \relax (2)+5 x^{2}+8 x -20}\) | \(35\) |
risch | \(\frac {\frac {3 x}{20}-\frac {21}{5}}{x^{2} \ln \relax (2)-\frac {x^{3}}{2}-\frac {5 x \ln \relax (2)}{2}+\frac {5 x^{2}}{4}+2 x -5}\) | \(35\) |
default | \(-\frac {3 \left (\frac {51 x}{2}-56 \ln \relax (2)+66\right )}{5 \left (20 \ln \relax (2)-9\right ) \left (x \ln \relax (2)-\frac {x^{2}}{2}+2\right )}-\frac {306}{5 \left (20 \ln \relax (2)-9\right ) \left (2 x -5\right )}\) | \(51\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.36, size = 34, normalized size = 1.06 \begin {gather*} -\frac {3 \, {\left (x - 28\right )}}{5 \, {\left (2 \, x^{3} - x^{2} {\left (4 \, \log \relax (2) + 5\right )} + 2 \, x {\left (5 \, \log \relax (2) - 4\right )} + 20\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.22, size = 26, normalized size = 0.81 \begin {gather*} \frac {3\,\left (x-28\right )}{5\,\left (2\,x-5\right )\,\left (-x^2+2\,\ln \relax (2)\,x+4\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 1.60, size = 31, normalized size = 0.97 \begin {gather*} \frac {84 - 3 x}{10 x^{3} + x^{2} \left (-25 - 20 \log {\relax (2 )}\right ) + x \left (-40 + 50 \log {\relax (2 )}\right ) + 100} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________