Optimal. Leaf size=17 \[ 3 e^{e^{x+x \left (x+4 x^2\right )}} \]
________________________________________________________________________________________
Rubi [F] time = 0.41, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int e^{e^{x+x^2+4 x^3}+x+x^2+4 x^3} \left (3+6 x+36 x^2\right ) \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (3 e^{e^{x+x^2+4 x^3}+x+x^2+4 x^3}+6 e^{e^{x+x^2+4 x^3}+x+x^2+4 x^3} x+36 e^{e^{x+x^2+4 x^3}+x+x^2+4 x^3} x^2\right ) \, dx\\ &=3 \int e^{e^{x+x^2+4 x^3}+x+x^2+4 x^3} \, dx+6 \int e^{e^{x+x^2+4 x^3}+x+x^2+4 x^3} x \, dx+36 \int e^{e^{x+x^2+4 x^3}+x+x^2+4 x^3} x^2 \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.25, size = 16, normalized size = 0.94 \begin {gather*} 3 e^{e^{x+x^2+4 x^3}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.61, size = 14, normalized size = 0.82 \begin {gather*} 3 \, e^{\left (e^{\left (4 \, x^{3} + x^{2} + x\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int 3 \, {\left (12 \, x^{2} + 2 \, x + 1\right )} e^{\left (4 \, x^{3} + x^{2} + x + e^{\left (4 \, x^{3} + x^{2} + x\right )}\right )}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.02, size = 15, normalized size = 0.88
method | result | size |
default | \(3 \,{\mathrm e}^{{\mathrm e}^{4 x^{3}+x^{2}+x}}\) | \(15\) |
norman | \(3 \,{\mathrm e}^{{\mathrm e}^{4 x^{3}+x^{2}+x}}\) | \(15\) |
risch | \(3 \,{\mathrm e}^{{\mathrm e}^{x \left (4 x^{2}+x +1\right )}}\) | \(15\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.59, size = 14, normalized size = 0.82 \begin {gather*} 3 \, e^{\left (e^{\left (4 \, x^{3} + x^{2} + x\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.60, size = 14, normalized size = 0.82 \begin {gather*} 3\,{\mathrm {e}}^{{\mathrm {e}}^{4\,x^3+x^2+x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.30, size = 14, normalized size = 0.82 \begin {gather*} 3 e^{e^{4 x^{3} + x^{2} + x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________