Optimal. Leaf size=26 \[ \frac {e^{-x} \log (5)}{(x+\log (4)) \left (\log (4)+\frac {\log (\log (4))}{x}\right )} \]
________________________________________________________________________________________
Rubi [B] time = 1.02, antiderivative size = 63, normalized size of antiderivative = 2.42, number of steps used = 10, number of rules used = 5, integrand size = 135, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.037, Rules used = {6688, 12, 6742, 2177, 2178} \begin {gather*} \frac {e^{-x} \log (4) \log (5)}{\left (\log ^2(4)-\log (\log (4))\right ) (x+\log (4))}-\frac {e^{-x} \log (5) \log (\log (4))}{\left (\log ^2(4)-\log (\log (4))\right ) (x \log (4)+\log (\log (4)))} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2177
Rule 2178
Rule 6688
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{-x} \log (5) \left (-x^3 \log (4)+\log (4) \log (\log (4))-x \log (4) \log (\log (4))-x^2 \left (\log (4)+\log ^2(4)+\log (\log (4))\right )\right )}{(x+\log (4))^2 (x \log (4)+\log (\log (4)))^2} \, dx\\ &=\log (5) \int \frac {e^{-x} \left (-x^3 \log (4)+\log (4) \log (\log (4))-x \log (4) \log (\log (4))-x^2 \left (\log (4)+\log ^2(4)+\log (\log (4))\right )\right )}{(x+\log (4))^2 (x \log (4)+\log (\log (4)))^2} \, dx\\ &=\log (5) \int \left (-\frac {e^{-x} \log (4)}{(x+\log (4))^2 \left (\log ^2(4)-\log (\log (4))\right )}-\frac {e^{-x} \log (4)}{(x+\log (4)) \left (\log ^2(4)-\log (\log (4))\right )}+\frac {e^{-x} \log (4) \log (\log (4))}{\left (\log ^2(4)-\log (\log (4))\right ) (x \log (4)+\log (\log (4)))^2}+\frac {e^{-x} \log (\log (4))}{\left (\log ^2(4)-\log (\log (4))\right ) (x \log (4)+\log (\log (4)))}\right ) \, dx\\ &=-\frac {(\log (4) \log (5)) \int \frac {e^{-x}}{(x+\log (4))^2} \, dx}{\log ^2(4)-\log (\log (4))}-\frac {(\log (4) \log (5)) \int \frac {e^{-x}}{x+\log (4)} \, dx}{\log ^2(4)-\log (\log (4))}+\frac {(\log (5) \log (\log (4))) \int \frac {e^{-x}}{x \log (4)+\log (\log (4))} \, dx}{\log ^2(4)-\log (\log (4))}+\frac {(\log (4) \log (5) \log (\log (4))) \int \frac {e^{-x}}{(x \log (4)+\log (\log (4)))^2} \, dx}{\log ^2(4)-\log (\log (4))}\\ &=-\frac {4 \text {Ei}(-x-\log (4)) \log (4) \log (5)}{\log ^2(4)-\log (\log (4))}+\frac {e^{-x} \log (4) \log (5)}{(x+\log (4)) \left (\log ^2(4)-\log (\log (4))\right )}+\frac {\text {Ei}\left (-\frac {x \log (4)+\log (\log (4))}{\log (4)}\right ) \log ^{-1+\frac {1}{\log (4)}}(4) \log (5) \log (\log (4))}{\log ^2(4)-\log (\log (4))}-\frac {e^{-x} \log (5) \log (\log (4))}{\left (\log ^2(4)-\log (\log (4))\right ) (x \log (4)+\log (\log (4)))}+\frac {(\log (4) \log (5)) \int \frac {e^{-x}}{x+\log (4)} \, dx}{\log ^2(4)-\log (\log (4))}-\frac {(\log (5) \log (\log (4))) \int \frac {e^{-x}}{x \log (4)+\log (\log (4))} \, dx}{\log ^2(4)-\log (\log (4))}\\ &=\frac {e^{-x} \log (4) \log (5)}{(x+\log (4)) \left (\log ^2(4)-\log (\log (4))\right )}-\frac {e^{-x} \log (5) \log (\log (4))}{\left (\log ^2(4)-\log (\log (4))\right ) (x \log (4)+\log (\log (4)))}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.22, size = 25, normalized size = 0.96 \begin {gather*} \frac {e^{-x} x \log (5)}{(x+\log (4)) (x \log (4)+\log (\log (4)))} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.58, size = 39, normalized size = 1.50 \begin {gather*} \frac {x \log \relax (5)}{{\left (x + 2 \, \log \relax (2)\right )} e^{x} \log \left (2 \, \log \relax (2)\right ) + 2 \, {\left (x^{2} \log \relax (2) + 2 \, x \log \relax (2)^{2}\right )} e^{x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.83, size = 47, normalized size = 1.81 \begin {gather*} \frac {x e^{\left (-x\right )} \log \relax (5)}{2 \, x^{2} \log \relax (2) + 4 \, x \log \relax (2)^{2} + x \log \relax (2) + 2 \, \log \relax (2)^{2} + x \log \left (\log \relax (2)\right ) + 2 \, \log \relax (2) \log \left (\log \relax (2)\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.37, size = 42, normalized size = 1.62
method | result | size |
gosper | \(\frac {x \ln \relax (5) {\mathrm e}^{-x}}{4 x \ln \relax (2)^{2}+2 x^{2} \ln \relax (2)+2 \ln \left (2 \ln \relax (2)\right ) \ln \relax (2)+x \ln \left (2 \ln \relax (2)\right )}\) | \(42\) |
norman | \(\frac {x \ln \relax (5) {\mathrm e}^{-x}}{4 x \ln \relax (2)^{2}+2 x^{2} \ln \relax (2)+2 \ln \left (2 \ln \relax (2)\right ) \ln \relax (2)+x \ln \left (2 \ln \relax (2)\right )}\) | \(42\) |
risch | \(\frac {x \ln \relax (5) {\mathrm e}^{-x}}{4 x \ln \relax (2)^{2}+2 x^{2} \ln \relax (2)+2 \ln \relax (2)^{2}+2 \ln \left (\ln \relax (2)\right ) \ln \relax (2)+x \ln \relax (2)+x \ln \left (\ln \relax (2)\right )}\) | \(48\) |
default | \(\frac {16 \ln \relax (2)^{4} \ln \relax (5) {\mathrm e}^{-x} x}{\left (16 \ln \relax (2)^{4}-8 \ln \relax (2)^{3}-8 \ln \relax (2)^{2} \ln \left (\ln \relax (2)\right )+\ln \relax (2)^{2}+2 \ln \left (\ln \relax (2)\right ) \ln \relax (2)+\ln \left (\ln \relax (2)\right )^{2}\right ) \left (4 x \ln \relax (2)^{2}+2 x^{2} \ln \relax (2)+2 \ln \relax (2)^{2}+2 \ln \left (\ln \relax (2)\right ) \ln \relax (2)+x \ln \relax (2)+x \ln \left (\ln \relax (2)\right )\right )}+\frac {\ln \relax (2)^{2} \ln \relax (5) {\mathrm e}^{-x} x}{\left (16 \ln \relax (2)^{4}-8 \ln \relax (2)^{3}-8 \ln \relax (2)^{2} \ln \left (\ln \relax (2)\right )+\ln \relax (2)^{2}+2 \ln \left (\ln \relax (2)\right ) \ln \relax (2)+\ln \left (\ln \relax (2)\right )^{2}\right ) \left (4 x \ln \relax (2)^{2}+2 x^{2} \ln \relax (2)+2 \ln \relax (2)^{2}+2 \ln \left (\ln \relax (2)\right ) \ln \relax (2)+x \ln \relax (2)+x \ln \left (\ln \relax (2)\right )\right )}+\frac {\ln \relax (5) {\mathrm e}^{-x} \ln \left (\ln \relax (2)\right )^{2} x}{\left (16 \ln \relax (2)^{4}-8 \ln \relax (2)^{3}-8 \ln \relax (2)^{2} \ln \left (\ln \relax (2)\right )+\ln \relax (2)^{2}+2 \ln \left (\ln \relax (2)\right ) \ln \relax (2)+\ln \left (\ln \relax (2)\right )^{2}\right ) \left (4 x \ln \relax (2)^{2}+2 x^{2} \ln \relax (2)+2 \ln \relax (2)^{2}+2 \ln \left (\ln \relax (2)\right ) \ln \relax (2)+x \ln \relax (2)+x \ln \left (\ln \relax (2)\right )\right )}-\frac {8 \ln \relax (2)^{3} \ln \relax (5) {\mathrm e}^{-x} x}{\left (16 \ln \relax (2)^{4}-8 \ln \relax (2)^{3}-8 \ln \relax (2)^{2} \ln \left (\ln \relax (2)\right )+\ln \relax (2)^{2}+2 \ln \left (\ln \relax (2)\right ) \ln \relax (2)+\ln \left (\ln \relax (2)\right )^{2}\right ) \left (4 x \ln \relax (2)^{2}+2 x^{2} \ln \relax (2)+2 \ln \relax (2)^{2}+2 \ln \left (\ln \relax (2)\right ) \ln \relax (2)+x \ln \relax (2)+x \ln \left (\ln \relax (2)\right )\right )}+\frac {2 \ln \relax (2) \ln \relax (5) {\mathrm e}^{-x} \ln \left (\ln \relax (2)\right ) x}{\left (16 \ln \relax (2)^{4}-8 \ln \relax (2)^{3}-8 \ln \relax (2)^{2} \ln \left (\ln \relax (2)\right )+\ln \relax (2)^{2}+2 \ln \left (\ln \relax (2)\right ) \ln \relax (2)+\ln \left (\ln \relax (2)\right )^{2}\right ) \left (4 x \ln \relax (2)^{2}+2 x^{2} \ln \relax (2)+2 \ln \relax (2)^{2}+2 \ln \left (\ln \relax (2)\right ) \ln \relax (2)+x \ln \relax (2)+x \ln \left (\ln \relax (2)\right )\right )}-\frac {8 \ln \relax (2)^{2} \ln \relax (5) {\mathrm e}^{-x} \ln \left (\ln \relax (2)\right ) x}{\left (16 \ln \relax (2)^{4}-8 \ln \relax (2)^{3}-8 \ln \relax (2)^{2} \ln \left (\ln \relax (2)\right )+\ln \relax (2)^{2}+2 \ln \left (\ln \relax (2)\right ) \ln \relax (2)+\ln \left (\ln \relax (2)\right )^{2}\right ) \left (4 x \ln \relax (2)^{2}+2 x^{2} \ln \relax (2)+2 \ln \relax (2)^{2}+2 \ln \left (\ln \relax (2)\right ) \ln \relax (2)+x \ln \relax (2)+x \ln \left (\ln \relax (2)\right )\right )}\) | \(557\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.53, size = 45, normalized size = 1.73 \begin {gather*} \frac {x e^{\left (-x\right )} \log \relax (5)}{2 \, x^{2} \log \relax (2) + {\left (4 \, \log \relax (2)^{2} + \log \relax (2) + \log \left (\log \relax (2)\right )\right )} x + 2 \, \log \relax (2)^{2} + 2 \, \log \relax (2) \log \left (\log \relax (2)\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.04 \begin {gather*} \int -\frac {\ln \relax (5)\,\left (4\,x^2\,{\ln \relax (2)}^2+2\,\ln \relax (2)\,\left (x^3+x^2\right )\right )+\ln \left (2\,\ln \relax (2)\right )\,\ln \relax (5)\,\left (2\,\ln \relax (2)\,\left (x-1\right )+x^2\right )}{{\mathrm {e}}^x\,\left (4\,{\ln \relax (2)}^2\,x^4+16\,{\ln \relax (2)}^3\,x^3+16\,{\ln \relax (2)}^4\,x^2\right )+\ln \left (2\,\ln \relax (2)\right )\,{\mathrm {e}}^x\,\left (4\,\ln \relax (2)\,x^3+16\,{\ln \relax (2)}^2\,x^2+16\,{\ln \relax (2)}^3\,x\right )+{\ln \left (2\,\ln \relax (2)\right )}^2\,{\mathrm {e}}^x\,\left (x^2+4\,\ln \relax (2)\,x+4\,{\ln \relax (2)}^2\right )} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.36, size = 53, normalized size = 2.04 \begin {gather*} \frac {x e^{- x} \log {\relax (5 )}}{2 x^{2} \log {\relax (2 )} + x \log {\left (\log {\relax (2 )} \right )} + x \log {\relax (2 )} + 4 x \log {\relax (2 )}^{2} + 2 \log {\relax (2 )} \log {\left (\log {\relax (2 )} \right )} + 2 \log {\relax (2 )}^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________