Optimal. Leaf size=33 \[ 2-e^{e^x}+\frac {2+\left (1-e^{5 e^{-x}}\right )^2}{x^2}-x \]
________________________________________________________________________________________
Rubi [F] time = 0.97, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{-x} \left (e^{10 e^{-x}} \left (-2 e^x-10 x\right )-e^{e^x+2 x} x^3+e^{5 e^{-x}} \left (4 e^x+10 x\right )+e^x \left (-6-x^3\right )\right )}{x^3} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-e^{e^x+x}-\frac {10 e^{5 e^{-x}-x} \left (-1+e^{5 e^{-x}}\right )}{x^2}-\frac {6-4 e^{5 e^{-x}}+2 e^{10 e^{-x}}+x^3}{x^3}\right ) \, dx\\ &=-\left (10 \int \frac {e^{5 e^{-x}-x} \left (-1+e^{5 e^{-x}}\right )}{x^2} \, dx\right )-\int e^{e^x+x} \, dx-\int \frac {6-4 e^{5 e^{-x}}+2 e^{10 e^{-x}}+x^3}{x^3} \, dx\\ &=-\left (10 \int \left (-\frac {e^{5 e^{-x}-x}}{x^2}+\frac {e^{10 e^{-x}-x}}{x^2}\right ) \, dx\right )-\int \left (-\frac {4 e^{5 e^{-x}}}{x^3}+\frac {2 e^{10 e^{-x}}}{x^3}+\frac {6+x^3}{x^3}\right ) \, dx-\operatorname {Subst}\left (\int e^x \, dx,x,e^x\right )\\ &=-e^{e^x}-2 \int \frac {e^{10 e^{-x}}}{x^3} \, dx+4 \int \frac {e^{5 e^{-x}}}{x^3} \, dx+10 \int \frac {e^{5 e^{-x}-x}}{x^2} \, dx-10 \int \frac {e^{10 e^{-x}-x}}{x^2} \, dx-\int \frac {6+x^3}{x^3} \, dx\\ &=-e^{e^x}-2 \int \frac {e^{10 e^{-x}}}{x^3} \, dx+4 \int \frac {e^{5 e^{-x}}}{x^3} \, dx+10 \int \frac {e^{5 e^{-x}-x}}{x^2} \, dx-10 \int \frac {e^{10 e^{-x}-x}}{x^2} \, dx-\int \left (1+\frac {6}{x^3}\right ) \, dx\\ &=-e^{e^x}+\frac {3}{x^2}-x-2 \int \frac {e^{10 e^{-x}}}{x^3} \, dx+4 \int \frac {e^{5 e^{-x}}}{x^3} \, dx+10 \int \frac {e^{5 e^{-x}-x}}{x^2} \, dx-10 \int \frac {e^{10 e^{-x}-x}}{x^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 1.30, size = 43, normalized size = 1.30 \begin {gather*} -e^{e^x}+\frac {3}{x^2}-\frac {2 e^{5 e^{-x}}}{x^2}+\frac {e^{10 e^{-x}}}{x^2}-x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.71, size = 57, normalized size = 1.73 \begin {gather*} -\frac {{\left (x^{2} e^{\left (2 \, x + e^{x}\right )} + {\left (x^{3} - 3\right )} e^{\left (2 \, x\right )} - e^{\left (2 \, x + 10 \, e^{\left (-x\right )}\right )} + 2 \, e^{\left (2 \, x + 5 \, e^{\left (-x\right )}\right )}\right )} e^{\left (-2 \, x\right )}}{x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int -\frac {{\left (x^{3} e^{\left (2 \, x + e^{x}\right )} + {\left (x^{3} + 6\right )} e^{x} + 2 \, {\left (5 \, x + e^{x}\right )} e^{\left (10 \, e^{\left (-x\right )}\right )} - 2 \, {\left (5 \, x + 2 \, e^{x}\right )} e^{\left (5 \, e^{\left (-x\right )}\right )}\right )} e^{\left (-x\right )}}{x^{3}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 38, normalized size = 1.15
method | result | size |
risch | \(-x +\frac {3}{x^{2}}-{\mathrm e}^{{\mathrm e}^{x}}+\frac {{\mathrm e}^{10 \,{\mathrm e}^{-x}}}{x^{2}}-\frac {2 \,{\mathrm e}^{5 \,{\mathrm e}^{-x}}}{x^{2}}\) | \(38\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} -x + \frac {3}{x^{2}} - e^{\left (e^{x}\right )} - \int \frac {2 \, {\left (5 \, x + e^{x}\right )} e^{\left (-x + 10 \, e^{\left (-x\right )}\right )}}{x^{3}}\,{d x} + \int \frac {2 \, {\left (5 \, x + 2 \, e^{x}\right )} e^{\left (-x + 5 \, e^{\left (-x\right )}\right )}}{x^{3}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.16, size = 37, normalized size = 1.12 \begin {gather*} \frac {{\mathrm {e}}^{10\,{\mathrm {e}}^{-x}}}{x^2}-{\mathrm {e}}^{{\mathrm {e}}^x}-\frac {2\,{\mathrm {e}}^{5\,{\mathrm {e}}^{-x}}}{x^2}-x+\frac {3}{x^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.35, size = 36, normalized size = 1.09 \begin {gather*} - x - e^{e^{x}} + \frac {3}{x^{2}} + \frac {x^{2} e^{10 e^{- x}} - 2 x^{2} e^{5 e^{- x}}}{x^{4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________