Optimal. Leaf size=29 \[ 1+\frac {\left (-1+e^{5 x}\right ) x}{\log \left (\frac {x}{-2-\log (-x+\log (x))}\right )} \]
________________________________________________________________________________________
Rubi [F] time = 8.52, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-1-x+e^{5 x} (1+x)+\left (2-2 e^{5 x}\right ) \log (x)+\left (-x+e^{5 x} x+\left (1-e^{5 x}\right ) \log (x)\right ) \log (-x+\log (x))+\left (2 x+e^{5 x} \left (-2 x-10 x^2\right )+\left (-2+e^{5 x} (2+10 x)\right ) \log (x)+\left (x+e^{5 x} \left (-x-5 x^2\right )+\left (-1+e^{5 x} (1+5 x)\right ) \log (x)\right ) \log (-x+\log (x))\right ) \log \left (-\frac {x}{2+\log (-x+\log (x))}\right )}{(-2 x+2 \log (x)+(-x+\log (x)) \log (-x+\log (x))) \log ^2\left (-\frac {x}{2+\log (-x+\log (x))}\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {1+x-e^{5 x} (1+x)+2 \left (-1+e^{5 x}\right ) \log (x)-\left (-1+e^{5 x}\right ) (x-\log (x)) \log (-x+\log (x))+\left (-1+e^{5 x} (1+5 x)\right ) (x-\log (x)) (2+\log (-x+\log (x))) \log \left (-\frac {x}{2+\log (-x+\log (x))}\right )}{(x-\log (x)) (2+\log (-x+\log (x))) \log ^2\left (-\frac {x}{2+\log (-x+\log (x))}\right )} \, dx\\ &=\int \left (\frac {1}{(x-\log (x)) (2+\log (-x+\log (x))) \log ^2\left (-\frac {x}{2+\log (-x+\log (x))}\right )}+\frac {x}{(x-\log (x)) (2+\log (-x+\log (x))) \log ^2\left (-\frac {x}{2+\log (-x+\log (x))}\right )}-\frac {2 \log (x)}{(x-\log (x)) (2+\log (-x+\log (x))) \log ^2\left (-\frac {x}{2+\log (-x+\log (x))}\right )}+\frac {\log (-x+\log (x))}{(2+\log (-x+\log (x))) \log ^2\left (-\frac {x}{2+\log (-x+\log (x))}\right )}-\frac {1}{\log \left (-\frac {x}{2+\log (-x+\log (x))}\right )}+\frac {e^{5 x} \left (-1-x+2 \log (x)-x \log (-x+\log (x))+\log (x) \log (-x+\log (x))+2 x \log \left (-\frac {x}{2+\log (-x+\log (x))}\right )+10 x^2 \log \left (-\frac {x}{2+\log (-x+\log (x))}\right )-2 \log (x) \log \left (-\frac {x}{2+\log (-x+\log (x))}\right )-10 x \log (x) \log \left (-\frac {x}{2+\log (-x+\log (x))}\right )+x \log (-x+\log (x)) \log \left (-\frac {x}{2+\log (-x+\log (x))}\right )+5 x^2 \log (-x+\log (x)) \log \left (-\frac {x}{2+\log (-x+\log (x))}\right )-\log (x) \log (-x+\log (x)) \log \left (-\frac {x}{2+\log (-x+\log (x))}\right )-5 x \log (x) \log (-x+\log (x)) \log \left (-\frac {x}{2+\log (-x+\log (x))}\right )\right )}{(x-\log (x)) (2+\log (-x+\log (x))) \log ^2\left (-\frac {x}{2+\log (-x+\log (x))}\right )}\right ) \, dx\\ &=-\left (2 \int \frac {\log (x)}{(x-\log (x)) (2+\log (-x+\log (x))) \log ^2\left (-\frac {x}{2+\log (-x+\log (x))}\right )} \, dx\right )+\int \frac {1}{(x-\log (x)) (2+\log (-x+\log (x))) \log ^2\left (-\frac {x}{2+\log (-x+\log (x))}\right )} \, dx+\int \frac {x}{(x-\log (x)) (2+\log (-x+\log (x))) \log ^2\left (-\frac {x}{2+\log (-x+\log (x))}\right )} \, dx+\int \frac {\log (-x+\log (x))}{(2+\log (-x+\log (x))) \log ^2\left (-\frac {x}{2+\log (-x+\log (x))}\right )} \, dx-\int \frac {1}{\log \left (-\frac {x}{2+\log (-x+\log (x))}\right )} \, dx+\int \frac {e^{5 x} \left (-1-x+2 \log (x)-x \log (-x+\log (x))+\log (x) \log (-x+\log (x))+2 x \log \left (-\frac {x}{2+\log (-x+\log (x))}\right )+10 x^2 \log \left (-\frac {x}{2+\log (-x+\log (x))}\right )-2 \log (x) \log \left (-\frac {x}{2+\log (-x+\log (x))}\right )-10 x \log (x) \log \left (-\frac {x}{2+\log (-x+\log (x))}\right )+x \log (-x+\log (x)) \log \left (-\frac {x}{2+\log (-x+\log (x))}\right )+5 x^2 \log (-x+\log (x)) \log \left (-\frac {x}{2+\log (-x+\log (x))}\right )-\log (x) \log (-x+\log (x)) \log \left (-\frac {x}{2+\log (-x+\log (x))}\right )-5 x \log (x) \log (-x+\log (x)) \log \left (-\frac {x}{2+\log (-x+\log (x))}\right )\right )}{(x-\log (x)) (2+\log (-x+\log (x))) \log ^2\left (-\frac {x}{2+\log (-x+\log (x))}\right )} \, dx\\ &=\frac {e^{5 x} \left (2 x^2 \log \left (-\frac {x}{2+\log (-x+\log (x))}\right )-2 x \log (x) \log \left (-\frac {x}{2+\log (-x+\log (x))}\right )+x^2 \log (-x+\log (x)) \log \left (-\frac {x}{2+\log (-x+\log (x))}\right )-x \log (x) \log (-x+\log (x)) \log \left (-\frac {x}{2+\log (-x+\log (x))}\right )\right )}{(x-\log (x)) (2+\log (-x+\log (x))) \log ^2\left (-\frac {x}{2+\log (-x+\log (x))}\right )}-2 \int \frac {\log (x)}{(x-\log (x)) (2+\log (-x+\log (x))) \log ^2\left (-\frac {x}{2+\log (-x+\log (x))}\right )} \, dx+\int \frac {1}{(x-\log (x)) (2+\log (-x+\log (x))) \log ^2\left (-\frac {x}{2+\log (-x+\log (x))}\right )} \, dx+\int \frac {x}{(x-\log (x)) (2+\log (-x+\log (x))) \log ^2\left (-\frac {x}{2+\log (-x+\log (x))}\right )} \, dx+\int \frac {\log (-x+\log (x))}{(2+\log (-x+\log (x))) \log ^2\left (-\frac {x}{2+\log (-x+\log (x))}\right )} \, dx-\int \frac {1}{\log \left (-\frac {x}{2+\log (-x+\log (x))}\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.23, size = 26, normalized size = 0.90 \begin {gather*} \frac {\left (-1+e^{5 x}\right ) x}{\log \left (-\frac {x}{2+\log (-x+\log (x))}\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.59, size = 28, normalized size = 0.97 \begin {gather*} \frac {x e^{\left (5 \, x\right )} - x}{\log \left (-\frac {x}{\log \left (-x + \log \relax (x)\right ) + 2}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 2.51, size = 1672, normalized size = 57.66 result too large to display
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.28, size = 175, normalized size = 6.03
method | result | size |
risch | \(-\frac {2 i x \left ({\mathrm e}^{5 x}-1\right )}{\pi \,\mathrm {csgn}\left (\frac {i}{\ln \left (\ln \relax (x )-x \right )+2}\right ) \mathrm {csgn}\left (\frac {i x}{\ln \left (\ln \relax (x )-x \right )+2}\right )^{2}-\pi \,\mathrm {csgn}\left (\frac {i}{\ln \left (\ln \relax (x )-x \right )+2}\right ) \mathrm {csgn}\left (\frac {i x}{\ln \left (\ln \relax (x )-x \right )+2}\right ) \mathrm {csgn}\left (i x \right )+\pi \mathrm {csgn}\left (\frac {i x}{\ln \left (\ln \relax (x )-x \right )+2}\right )^{3}-2 \pi \mathrm {csgn}\left (\frac {i x}{\ln \left (\ln \relax (x )-x \right )+2}\right )^{2}+\pi \mathrm {csgn}\left (\frac {i x}{\ln \left (\ln \relax (x )-x \right )+2}\right )^{2} \mathrm {csgn}\left (i x \right )+2 \pi -2 i \ln \relax (x )+2 i \ln \left (\ln \left (\ln \relax (x )-x \right )+2\right )}\) | \(175\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.44, size = 30, normalized size = 1.03 \begin {gather*} \frac {x e^{\left (5 \, x\right )} - x}{\log \relax (x) - \log \left (-\log \left (-x + \log \relax (x)\right ) - 2\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.57, size = 266, normalized size = 9.17 \begin {gather*} {\mathrm {e}}^{5\,x}\,\left (5\,x^2+x\right )-x+\frac {x\,\left ({\mathrm {e}}^{5\,x}-1\right )-\frac {x\,\ln \left (-\frac {x}{\ln \left (\ln \relax (x)-x\right )+2}\right )\,\left (x-\ln \relax (x)\right )\,\left (\ln \left (\ln \relax (x)-x\right )+2\right )\,\left ({\mathrm {e}}^{5\,x}+5\,x\,{\mathrm {e}}^{5\,x}-1\right )}{x-2\,\ln \relax (x)+x\,\ln \left (\ln \relax (x)-x\right )-\ln \left (\ln \relax (x)-x\right )\,\ln \relax (x)+1}}{\ln \left (-\frac {x}{\ln \left (\ln \relax (x)-x\right )+2}\right )}-\frac {x^3\,\ln \relax (x)-x^2\,\ln \relax (x)+x^2\,{\mathrm {e}}^{5\,x}+x^3\,{\mathrm {e}}^{5\,x}-16\,x^4\,{\mathrm {e}}^{5\,x}+19\,x^5\,{\mathrm {e}}^{5\,x}-5\,x^6\,{\mathrm {e}}^{5\,x}-x^2+4\,x^3-4\,x^4+x^5+x^2\,{\mathrm {e}}^{5\,x}\,\ln \relax (x)+4\,x^3\,{\mathrm {e}}^{5\,x}\,\ln \relax (x)-5\,x^4\,{\mathrm {e}}^{5\,x}\,\ln \relax (x)}{\left (x-2\,\ln \relax (x)+\ln \left (\ln \relax (x)-x\right )\,\left (x-\ln \relax (x)\right )+1\right )\,\left (x+x\,\ln \relax (x)-3\,x^2+x^3\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 8.91, size = 34, normalized size = 1.17 \begin {gather*} \frac {x e^{5 x}}{\log {\left (- \frac {x}{\log {\left (- x + \log {\relax (x )} \right )} + 2} \right )}} - \frac {x}{\log {\left (- \frac {x}{\log {\left (- x + \log {\relax (x )} \right )} + 2} \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________