Optimal. Leaf size=26 \[ x \left (-3+(-6+x) \left (x+\frac {-x+\log \left (e^x+4 x\right )}{x}\right )\right ) \]
________________________________________________________________________________________
Rubi [F] time = 0.53, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-24+16 x-56 x^2+12 x^3+e^x \left (-3-13 x+3 x^2\right )+\left (e^x+4 x\right ) \log \left (e^x+4 x\right )}{e^x+4 x} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-3-13 x+3 x^2-\frac {4 \left (6-7 x+x^2\right )}{e^x+4 x}+\log \left (e^x+4 x\right )\right ) \, dx\\ &=-3 x-\frac {13 x^2}{2}+x^3-4 \int \frac {6-7 x+x^2}{e^x+4 x} \, dx+\int \log \left (e^x+4 x\right ) \, dx\\ &=-3 x-\frac {13 x^2}{2}+x^3+x \log \left (e^x+4 x\right )-4 \int \left (\frac {6}{e^x+4 x}-\frac {7 x}{e^x+4 x}+\frac {x^2}{e^x+4 x}\right ) \, dx-\int \frac {\left (4+e^x\right ) x}{e^x+4 x} \, dx\\ &=-3 x-\frac {13 x^2}{2}+x^3+x \log \left (e^x+4 x\right )-4 \int \frac {x^2}{e^x+4 x} \, dx-24 \int \frac {1}{e^x+4 x} \, dx+28 \int \frac {x}{e^x+4 x} \, dx-\int \left (x-\frac {4 (-1+x) x}{e^x+4 x}\right ) \, dx\\ &=-3 x-7 x^2+x^3+x \log \left (e^x+4 x\right )+4 \int \frac {(-1+x) x}{e^x+4 x} \, dx-4 \int \frac {x^2}{e^x+4 x} \, dx-24 \int \frac {1}{e^x+4 x} \, dx+28 \int \frac {x}{e^x+4 x} \, dx\\ &=-3 x-7 x^2+x^3+x \log \left (e^x+4 x\right )-4 \int \frac {x^2}{e^x+4 x} \, dx+4 \int \left (-\frac {x}{e^x+4 x}+\frac {x^2}{e^x+4 x}\right ) \, dx-24 \int \frac {1}{e^x+4 x} \, dx+28 \int \frac {x}{e^x+4 x} \, dx\\ &=-3 x-7 x^2+x^3+x \log \left (e^x+4 x\right )-4 \int \frac {x}{e^x+4 x} \, dx-24 \int \frac {1}{e^x+4 x} \, dx+28 \int \frac {x}{e^x+4 x} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.13, size = 32, normalized size = 1.23 \begin {gather*} 3 x-7 x^2+x^3-6 \log \left (e^x+4 x\right )+x \log \left (e^x+4 x\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.02, size = 23, normalized size = 0.88 \begin {gather*} x^{3} - 7 \, x^{2} + {\left (x - 6\right )} \log \left (4 \, x + e^{x}\right ) + 3 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.19, size = 32, normalized size = 1.23 \begin {gather*} x^{3} - 7 \, x^{2} + x \log \left (4 \, x + e^{x}\right ) + 3 \, x - 6 \, \log \left (-4 \, x - e^{x}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 31, normalized size = 1.19
method | result | size |
norman | \(x^{3}-6 \ln \left (4 x +{\mathrm e}^{x}\right )+\ln \left (4 x +{\mathrm e}^{x}\right ) x +3 x -7 x^{2}\) | \(31\) |
risch | \(x^{3}-6 \ln \left (4 x +{\mathrm e}^{x}\right )+\ln \left (4 x +{\mathrm e}^{x}\right ) x +3 x -7 x^{2}\) | \(31\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.37, size = 23, normalized size = 0.88 \begin {gather*} x^{3} - 7 \, x^{2} + {\left (x - 6\right )} \log \left (4 \, x + e^{x}\right ) + 3 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.76, size = 30, normalized size = 1.15 \begin {gather*} 3\,x-6\,\ln \left (4\,x+{\mathrm {e}}^x\right )+x\,\ln \left (4\,x+{\mathrm {e}}^x\right )-7\,x^2+x^3 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.34, size = 31, normalized size = 1.19 \begin {gather*} x^{3} - 7 x^{2} + x \log {\left (4 x + e^{x} \right )} + 3 x - 6 \log {\left (4 x + e^{x} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________