Optimal. Leaf size=22 \[ \left (-5+\frac {5}{-\frac {6 x}{5}+e^2 \log ^4(x)}\right )^2 \]
________________________________________________________________________________________
Rubi [A] time = 0.54, antiderivative size = 35, normalized size of antiderivative = 1.59, number of steps used = 6, number of rules used = 4, integrand size = 84, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.048, Rules used = {6688, 12, 6742, 2544} \begin {gather*} \frac {250}{6 x-5 e^2 \log ^4(x)}+\frac {625}{\left (6 x-5 e^2 \log ^4(x)\right )^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2544
Rule 6688
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {500 \left (-3 x (5+6 x)+10 e^2 (5+6 x) \log ^3(x)+15 e^2 x \log ^4(x)-50 e^4 \log ^7(x)\right )}{x \left (6 x-5 e^2 \log ^4(x)\right )^3} \, dx\\ &=500 \int \frac {-3 x (5+6 x)+10 e^2 (5+6 x) \log ^3(x)+15 e^2 x \log ^4(x)-50 e^4 \log ^7(x)}{x \left (6 x-5 e^2 \log ^4(x)\right )^3} \, dx\\ &=500 \int \left (-\frac {5 \left (3 x-10 e^2 \log ^3(x)\right )}{x \left (6 x-5 e^2 \log ^4(x)\right )^3}+\frac {-3 x+10 e^2 \log ^3(x)}{x \left (6 x-5 e^2 \log ^4(x)\right )^2}\right ) \, dx\\ &=500 \int \frac {-3 x+10 e^2 \log ^3(x)}{x \left (6 x-5 e^2 \log ^4(x)\right )^2} \, dx-2500 \int \frac {3 x-10 e^2 \log ^3(x)}{x \left (6 x-5 e^2 \log ^4(x)\right )^3} \, dx\\ &=\frac {625}{\left (6 x-5 e^2 \log ^4(x)\right )^2}+\frac {250}{6 x-5 e^2 \log ^4(x)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.33, size = 31, normalized size = 1.41 \begin {gather*} -\frac {125 \left (-5-12 x+10 e^2 \log ^4(x)\right )}{\left (6 x-5 e^2 \log ^4(x)\right )^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.54, size = 40, normalized size = 1.82 \begin {gather*} -\frac {125 \, {\left (10 \, e^{2} \log \relax (x)^{4} - 12 \, x - 5\right )}}{25 \, e^{4} \log \relax (x)^{8} - 60 \, x e^{2} \log \relax (x)^{4} + 36 \, x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 1.29, size = 40, normalized size = 1.82 \begin {gather*} -\frac {250 \, {\left (10 \, e^{2} \log \relax (x)^{4} - 12 \, x - 5\right )}}{25 \, e^{4} \log \relax (x)^{8} - 60 \, x e^{2} \log \relax (x)^{4} + 36 \, x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 30, normalized size = 1.36
method | result | size |
risch | \(-\frac {125 \left (10 \,{\mathrm e}^{2} \ln \relax (x )^{4}-12 x -5\right )}{\left (5 \,{\mathrm e}^{2} \ln \relax (x )^{4}-6 x \right )^{2}}\) | \(30\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.40, size = 40, normalized size = 1.82 \begin {gather*} -\frac {125 \, {\left (10 \, e^{2} \log \relax (x)^{4} - 12 \, x - 5\right )}}{25 \, e^{4} \log \relax (x)^{8} - 60 \, x e^{2} \log \relax (x)^{4} + 36 \, x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.73, size = 29, normalized size = 1.32 \begin {gather*} \frac {125\,\left (-10\,{\mathrm {e}}^2\,{\ln \relax (x)}^4+12\,x+5\right )}{{\left (6\,x-5\,{\mathrm {e}}^2\,{\ln \relax (x)}^4\right )}^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.18, size = 41, normalized size = 1.86 \begin {gather*} \frac {1500 x - 1250 e^{2} \log {\relax (x )}^{4} + 625}{36 x^{2} - 60 x e^{2} \log {\relax (x )}^{4} + 25 e^{4} \log {\relax (x )}^{8}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________