Optimal. Leaf size=21 \[ e^{-\frac {2}{\left (-2+e^3\right ) \left (-\frac {x}{2}+\log (5)\right )}} \]
________________________________________________________________________________________
Rubi [A] time = 0.13, antiderivative size = 21, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 4, integrand size = 68, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.059, Rules used = {6, 12, 6688, 2209} \begin {gather*} e^{-\frac {4}{\left (2-e^3\right ) (x-2 \log (5))}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6
Rule 12
Rule 2209
Rule 6688
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int -\frac {4 e^{-\frac {4}{2 x-e^3 x+\left (-4+2 e^3\right ) \log (5)}}}{\left (-2+e^3\right ) x^2+\left (8 x-4 e^3 x\right ) \log (5)+\left (-8+4 e^3\right ) \log ^2(5)} \, dx\\ &=-\left (4 \int \frac {e^{-\frac {4}{2 x-e^3 x+\left (-4+2 e^3\right ) \log (5)}}}{\left (-2+e^3\right ) x^2+\left (8 x-4 e^3 x\right ) \log (5)+\left (-8+4 e^3\right ) \log ^2(5)} \, dx\right )\\ &=-\left (4 \int \frac {e^{\frac {4}{\left (-2+e^3\right ) (x-2 \log (5))}}}{\left (-2+e^3\right ) (x-2 \log (5))^2} \, dx\right )\\ &=\frac {4 \int \frac {e^{\frac {4}{\left (-2+e^3\right ) (x-2 \log (5))}}}{(x-2 \log (5))^2} \, dx}{2-e^3}\\ &=e^{-\frac {4}{\left (2-e^3\right ) (x-2 \log (5))}}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.02, size = 19, normalized size = 0.90 \begin {gather*} e^{\frac {4}{\left (-2+e^3\right ) (x-2 \log (5))}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.59, size = 21, normalized size = 1.00 \begin {gather*} e^{\left (\frac {4}{x e^{3} - 2 \, {\left (e^{3} - 2\right )} \log \relax (5) - 2 \, x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.24, size = 23, normalized size = 1.10 \begin {gather*} e^{\left (\frac {4}{x e^{3} - 2 \, e^{3} \log \relax (5) - 2 \, x + 4 \, \log \relax (5)}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.33, size = 18, normalized size = 0.86
method | result | size |
derivativedivides | \({\mathrm e}^{\frac {4}{\left (x -2 \ln \relax (5)\right ) \left ({\mathrm e}^{3}-2\right )}}\) | \(18\) |
default | \({\mathrm e}^{\frac {4}{\left (x -2 \ln \relax (5)\right ) \left ({\mathrm e}^{3}-2\right )}}\) | \(18\) |
risch | \({\mathrm e}^{-\frac {4}{\left (2 \ln \relax (5)-x \right ) \left ({\mathrm e}^{3}-2\right )}}\) | \(20\) |
gosper | \({\mathrm e}^{-\frac {4}{2 \,{\mathrm e}^{3} \ln \relax (5)-x \,{\mathrm e}^{3}-4 \ln \relax (5)+2 x}}\) | \(25\) |
norman | \(\frac {-x \,{\mathrm e}^{-\frac {4}{\left (2 \,{\mathrm e}^{3}-4\right ) \ln \relax (5)-x \,{\mathrm e}^{3}+2 x}}+2 \ln \relax (5) {\mathrm e}^{-\frac {4}{\left (2 \,{\mathrm e}^{3}-4\right ) \ln \relax (5)-x \,{\mathrm e}^{3}+2 x}}}{2 \ln \relax (5)-x}\) | \(66\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.47, size = 20, normalized size = 0.95 \begin {gather*} e^{\left (\frac {4}{x {\left (e^{3} - 2\right )} - 2 \, {\left (e^{3} - 2\right )} \log \relax (5)}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.02, size = 17, normalized size = 0.81 \begin {gather*} {\mathrm {e}}^{\frac {4}{\left (x-2\,\ln \relax (5)\right )\,\left ({\mathrm {e}}^3-2\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.36, size = 22, normalized size = 1.05 \begin {gather*} e^{- \frac {4}{- x e^{3} + 2 x + \left (-4 + 2 e^{3}\right ) \log {\relax (5 )}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________