Optimal. Leaf size=27 \[ \frac {8 x}{1-\log \left (5+x-\frac {-\frac {20}{x}+2 x}{x}\right )} \]
________________________________________________________________________________________
Rubi [F] time = 0.78, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-160+24 x^2+16 x^3+\left (-160-24 x^2-8 x^3\right ) \log \left (\frac {20+3 x^2+x^3}{x^2}\right )}{20+3 x^2+x^3+\left (-40-6 x^2-2 x^3\right ) \log \left (\frac {20+3 x^2+x^3}{x^2}\right )+\left (20+3 x^2+x^3\right ) \log ^2\left (\frac {20+3 x^2+x^3}{x^2}\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {8 \left (-20+3 x^2+2 x^3-\left (20+3 x^2+x^3\right ) \log \left (3+\frac {20}{x^2}+x\right )\right )}{\left (20+3 x^2+x^3\right ) \left (1-\log \left (3+\frac {20}{x^2}+x\right )\right )^2} \, dx\\ &=8 \int \frac {-20+3 x^2+2 x^3-\left (20+3 x^2+x^3\right ) \log \left (3+\frac {20}{x^2}+x\right )}{\left (20+3 x^2+x^3\right ) \left (1-\log \left (3+\frac {20}{x^2}+x\right )\right )^2} \, dx\\ &=8 \int \left (\frac {1}{1-\log \left (3+\frac {20}{x^2}+x\right )}+\frac {-40+x^3}{\left (20+3 x^2+x^3\right ) \left (-1+\log \left (3+\frac {20}{x^2}+x\right )\right )^2}\right ) \, dx\\ &=8 \int \frac {1}{1-\log \left (3+\frac {20}{x^2}+x\right )} \, dx+8 \int \frac {-40+x^3}{\left (20+3 x^2+x^3\right ) \left (-1+\log \left (3+\frac {20}{x^2}+x\right )\right )^2} \, dx\\ &=8 \int \left (\frac {1}{\left (-1+\log \left (3+\frac {20}{x^2}+x\right )\right )^2}-\frac {3 \left (20+x^2\right )}{\left (20+3 x^2+x^3\right ) \left (-1+\log \left (3+\frac {20}{x^2}+x\right )\right )^2}\right ) \, dx+8 \int \frac {1}{1-\log \left (3+\frac {20}{x^2}+x\right )} \, dx\\ &=8 \int \frac {1}{1-\log \left (3+\frac {20}{x^2}+x\right )} \, dx+8 \int \frac {1}{\left (-1+\log \left (3+\frac {20}{x^2}+x\right )\right )^2} \, dx-24 \int \frac {20+x^2}{\left (20+3 x^2+x^3\right ) \left (-1+\log \left (3+\frac {20}{x^2}+x\right )\right )^2} \, dx\\ &=8 \int \frac {1}{1-\log \left (3+\frac {20}{x^2}+x\right )} \, dx+8 \int \frac {1}{\left (-1+\log \left (3+\frac {20}{x^2}+x\right )\right )^2} \, dx-24 \int \left (\frac {20}{\left (20+3 x^2+x^3\right ) \left (-1+\log \left (3+\frac {20}{x^2}+x\right )\right )^2}+\frac {x^2}{\left (20+3 x^2+x^3\right ) \left (-1+\log \left (3+\frac {20}{x^2}+x\right )\right )^2}\right ) \, dx\\ &=8 \int \frac {1}{1-\log \left (3+\frac {20}{x^2}+x\right )} \, dx+8 \int \frac {1}{\left (-1+\log \left (3+\frac {20}{x^2}+x\right )\right )^2} \, dx-24 \int \frac {x^2}{\left (20+3 x^2+x^3\right ) \left (-1+\log \left (3+\frac {20}{x^2}+x\right )\right )^2} \, dx-480 \int \frac {1}{\left (20+3 x^2+x^3\right ) \left (-1+\log \left (3+\frac {20}{x^2}+x\right )\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.15, size = 16, normalized size = 0.59 \begin {gather*} -\frac {8 x}{-1+\log \left (3+\frac {20}{x^2}+x\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.49, size = 22, normalized size = 0.81 \begin {gather*} -\frac {8 \, x}{\log \left (\frac {x^{3} + 3 \, x^{2} + 20}{x^{2}}\right ) - 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.43, size = 22, normalized size = 0.81 \begin {gather*} -\frac {8 \, x}{\log \left (\frac {x^{3} + 3 \, x^{2} + 20}{x^{2}}\right ) - 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 23, normalized size = 0.85
method | result | size |
norman | \(-\frac {8 x}{\ln \left (\frac {x^{3}+3 x^{2}+20}{x^{2}}\right )-1}\) | \(23\) |
risch | \(-\frac {8 x}{\ln \left (\frac {x^{3}+3 x^{2}+20}{x^{2}}\right )-1}\) | \(23\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.42, size = 22, normalized size = 0.81 \begin {gather*} -\frac {8 \, x}{\log \left (x^{3} + 3 \, x^{2} + 20\right ) - 2 \, \log \relax (x) - 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.87, size = 41, normalized size = 1.52 \begin {gather*} -\frac {8\,\left (x-3\,\ln \left (\frac {x^3+3\,x^2+20}{x^2}\right )+3\right )}{\ln \left (\frac {x^3+3\,x^2+20}{x^2}\right )-1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.17, size = 20, normalized size = 0.74 \begin {gather*} - \frac {8 x}{\log {\left (\frac {x^{3} + 3 x^{2} + 20}{x^{2}} \right )} - 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________