Optimal. Leaf size=25 \[ \frac {\log (5)}{x^2 \left (\frac {3}{4} e^{-x} x^2+\log (6 x)\right )} \]
________________________________________________________________________________________
Rubi [F] time = 4.77, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-16 e^{2 x} \log (5)+e^x \left (-48 x^2+12 x^3\right ) \log (5)-32 e^{2 x} \log (5) \log (6 x)}{9 x^7+24 e^x x^5 \log (6 x)+16 e^{2 x} x^3 \log ^2(6 x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {4 e^x \log (5) \left (-4 e^x+3 (-4+x) x^2-8 e^x \log (6 x)\right )}{x^3 \left (3 x^2+4 e^x \log (6 x)\right )^2} \, dx\\ &=(4 \log (5)) \int \frac {e^x \left (-4 e^x+3 (-4+x) x^2-8 e^x \log (6 x)\right )}{x^3 \left (3 x^2+4 e^x \log (6 x)\right )^2} \, dx\\ &=(4 \log (5)) \int \left (-\frac {e^x (1+2 \log (6 x))}{x^3 \log (6 x) \left (3 x^2+4 e^x \log (6 x)\right )}+\frac {3 e^x (1-2 \log (6 x)+x \log (6 x))}{x \log (6 x) \left (3 x^2+4 e^x \log (6 x)\right )^2}\right ) \, dx\\ &=-\left ((4 \log (5)) \int \frac {e^x (1+2 \log (6 x))}{x^3 \log (6 x) \left (3 x^2+4 e^x \log (6 x)\right )} \, dx\right )+(12 \log (5)) \int \frac {e^x (1-2 \log (6 x)+x \log (6 x))}{x \log (6 x) \left (3 x^2+4 e^x \log (6 x)\right )^2} \, dx\\ &=-\left ((4 \log (5)) \int \left (\frac {2 e^x}{x^3 \left (3 x^2+4 e^x \log (6 x)\right )}+\frac {e^x}{x^3 \log (6 x) \left (3 x^2+4 e^x \log (6 x)\right )}\right ) \, dx\right )+(12 \log (5)) \int \frac {e^x (1+(-2+x) \log (6 x))}{x \log (6 x) \left (3 x^2+4 e^x \log (6 x)\right )^2} \, dx\\ &=-\left ((4 \log (5)) \int \frac {e^x}{x^3 \log (6 x) \left (3 x^2+4 e^x \log (6 x)\right )} \, dx\right )-(8 \log (5)) \int \frac {e^x}{x^3 \left (3 x^2+4 e^x \log (6 x)\right )} \, dx+(12 \log (5)) \int \left (\frac {e^x}{\left (3 x^2+4 e^x \log (6 x)\right )^2}-\frac {2 e^x}{x \left (3 x^2+4 e^x \log (6 x)\right )^2}+\frac {e^x}{x \log (6 x) \left (3 x^2+4 e^x \log (6 x)\right )^2}\right ) \, dx\\ &=-\left ((4 \log (5)) \int \frac {e^x}{x^3 \log (6 x) \left (3 x^2+4 e^x \log (6 x)\right )} \, dx\right )-(8 \log (5)) \int \frac {e^x}{x^3 \left (3 x^2+4 e^x \log (6 x)\right )} \, dx+(12 \log (5)) \int \frac {e^x}{\left (3 x^2+4 e^x \log (6 x)\right )^2} \, dx+(12 \log (5)) \int \frac {e^x}{x \log (6 x) \left (3 x^2+4 e^x \log (6 x)\right )^2} \, dx-(24 \log (5)) \int \frac {e^x}{x \left (3 x^2+4 e^x \log (6 x)\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.82, size = 27, normalized size = 1.08 \begin {gather*} \frac {4 e^x \log (5)}{x^2 \left (3 x^2+4 e^x \log (6 x)\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.47, size = 25, normalized size = 1.00 \begin {gather*} \frac {4 \, e^{x} \log \relax (5)}{3 \, x^{4} + 4 \, x^{2} e^{x} \log \left (6 \, x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.21, size = 32, normalized size = 1.28 \begin {gather*} \frac {4 \, e^{x} \log \relax (5)}{3 \, x^{4} + 4 \, x^{2} e^{x} \log \relax (6) + 4 \, x^{2} e^{x} \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 26, normalized size = 1.04
method | result | size |
risch | \(\frac {4 \ln \relax (5) {\mathrm e}^{x}}{x^{2} \left (4 \,{\mathrm e}^{x} \ln \left (6 x \right )+3 x^{2}\right )}\) | \(26\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.53, size = 34, normalized size = 1.36 \begin {gather*} \frac {4 \, e^{x} \log \relax (5)}{3 \, x^{4} + 4 \, {\left (x^{2} {\left (\log \relax (3) + \log \relax (2)\right )} + x^{2} \log \relax (x)\right )} e^{x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.45, size = 66, normalized size = 2.64 \begin {gather*} \frac {4\,{\mathrm {e}}^{2\,x}\,\ln \relax (5)\,\left (4\,{\mathrm {e}}^x+6\,x^2-3\,x^3\right )}{x\,\left (4\,\ln \left (6\,x\right )\,{\mathrm {e}}^x+3\,x^2\right )\,\left (4\,x\,{\mathrm {e}}^{2\,x}+6\,x^3\,{\mathrm {e}}^x-3\,x^4\,{\mathrm {e}}^x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.43, size = 37, normalized size = 1.48 \begin {gather*} - \frac {3 \log {\relax (5 )}}{3 x^{2} \log {\left (6 x \right )} + 4 e^{x} \log {\left (6 x \right )}^{2}} + \frac {\log {\relax (5 )}}{x^{2} \log {\left (6 x \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________