Optimal. Leaf size=25 \[ e^{21+x}-x-e^{-\log ^2\left (x^2\right )} \log (-3+x) \]
________________________________________________________________________________________
Rubi [B] time = 0.91, antiderivative size = 56, normalized size of antiderivative = 2.24, number of steps used = 5, number of rules used = 4, integrand size = 69, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.058, Rules used = {1593, 6742, 2194, 2288} \begin {gather*} -\frac {e^{-\log ^2\left (x^2\right )} \left (3 \log (x-3) \log \left (x^2\right )-x \log (x-3) \log \left (x^2\right )\right )}{(3-x) \log \left (x^2\right )}-x+e^{x+21} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 1593
Rule 2194
Rule 2288
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{-\log ^2\left (x^2\right )} \left (-x+e^{\log ^2\left (x^2\right )} \left (3 x-x^2+e^{21+x} \left (-3 x+x^2\right )\right )+(-12+4 x) \log (-3+x) \log \left (x^2\right )\right )}{(-3+x) x} \, dx\\ &=\int \left (-1+e^{21+x}+\frac {e^{-\log ^2\left (x^2\right )} \left (-x-12 \log (-3+x) \log \left (x^2\right )+4 x \log (-3+x) \log \left (x^2\right )\right )}{(-3+x) x}\right ) \, dx\\ &=-x+\int e^{21+x} \, dx+\int \frac {e^{-\log ^2\left (x^2\right )} \left (-x-12 \log (-3+x) \log \left (x^2\right )+4 x \log (-3+x) \log \left (x^2\right )\right )}{(-3+x) x} \, dx\\ &=e^{21+x}-x-\frac {e^{-\log ^2\left (x^2\right )} \left (3 \log (-3+x) \log \left (x^2\right )-x \log (-3+x) \log \left (x^2\right )\right )}{(3-x) \log \left (x^2\right )}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.76, size = 25, normalized size = 1.00 \begin {gather*} e^{21+x}-x-e^{-\log ^2\left (x^2\right )} \log (-3+x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.87, size = 32, normalized size = 1.28 \begin {gather*} -{\left ({\left (x - e^{\left (x + 21\right )}\right )} e^{\left (\log \left (x^{2}\right )^{2}\right )} + \log \left (x - 3\right )\right )} e^{\left (-\log \left (x^{2}\right )^{2}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.22, size = 23, normalized size = 0.92 \begin {gather*} -e^{\left (-\log \left (x^{2}\right )^{2}\right )} \log \left (x - 3\right ) - x + e^{\left (x + 21\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.24, size = 74, normalized size = 2.96
method | result | size |
risch | \({\mathrm e}^{x +21}-x -\ln \left (x -3\right ) {\mathrm e}^{-\frac {\left (-i \pi \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )+2 i \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}-i \pi \mathrm {csgn}\left (i x^{2}\right )^{3}+4 \ln \relax (x )\right )^{2}}{4}}\) | \(74\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.40, size = 21, normalized size = 0.84 \begin {gather*} -e^{\left (-4 \, \log \relax (x)^{2}\right )} \log \left (x - 3\right ) - x + e^{\left (x + 21\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.70, size = 23, normalized size = 0.92 \begin {gather*} {\mathrm {e}}^{x+21}-x-\ln \left (x-3\right )\,{\mathrm {e}}^{-{\ln \left (x^2\right )}^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 2.09, size = 19, normalized size = 0.76 \begin {gather*} - x + e^{x + 21} - e^{- \log {\left (x^{2} \right )}^{2}} \log {\left (x - 3 \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________