Optimal. Leaf size=27 \[ 1+3 e^{-\left (-\frac {3}{2}+2 x+\log \left (4 x-x^2\right )\right )^2} \]
________________________________________________________________________________________
Rubi [F] time = 7.23, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\exp \left (\frac {1}{4} \left (-9+24 x-16 x^2-(-12+16 x) \log \left (4 x-x^2\right )-4 \log ^2\left (4 x-x^2\right )\right )\right ) \left (-36-6 x+90 x^2-24 x^3+\left (24+36 x-12 x^2\right ) \log \left (4 x-x^2\right )\right )}{-4 x+x^2} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {\exp \left (\frac {1}{4} \left (-9+24 x-16 x^2-(-12+16 x) \log \left (4 x-x^2\right )-4 \log ^2\left (4 x-x^2\right )\right )\right ) \left (-36-6 x+90 x^2-24 x^3+\left (24+36 x-12 x^2\right ) \log \left (4 x-x^2\right )\right )}{(-4+x) x} \, dx\\ &=\int 6 \exp \left (\frac {1}{4} \left (-9+24 x-16 x^2-4 \log ^2(-((-4+x) x))\right )\right ) ((4-x) x)^{2-4 x} \left (2+3 x-x^2\right ) (3-4 x-2 \log (-((-4+x) x))) \, dx\\ &=6 \int \exp \left (\frac {1}{4} \left (-9+24 x-16 x^2-4 \log ^2(-((-4+x) x))\right )\right ) ((4-x) x)^{2-4 x} \left (2+3 x-x^2\right ) (3-4 x-2 \log (-((-4+x) x))) \, dx\\ &=6 \int \left (6 \exp \left (\frac {1}{4} \left (-9+24 x-16 x^2-4 \log ^2(-((-4+x) x))\right )\right ) ((4-x) x)^{2-4 x}+\exp \left (\frac {1}{4} \left (-9+24 x-16 x^2-4 \log ^2(-((-4+x) x))\right )\right ) x ((4-x) x)^{2-4 x}-15 \exp \left (\frac {1}{4} \left (-9+24 x-16 x^2-4 \log ^2(-((-4+x) x))\right )\right ) x^2 ((4-x) x)^{2-4 x}+4 \exp \left (\frac {1}{4} \left (-9+24 x-16 x^2-4 \log ^2(-((-4+x) x))\right )\right ) x^3 ((4-x) x)^{2-4 x}+2 \exp \left (\frac {1}{4} \left (-9+24 x-16 x^2-4 \log ^2(-((-4+x) x))\right )\right ) ((4-x) x)^{2-4 x} \left (-2-3 x+x^2\right ) \log ((4-x) x)\right ) \, dx\\ &=6 \int \exp \left (\frac {1}{4} \left (-9+24 x-16 x^2-4 \log ^2(-((-4+x) x))\right )\right ) x ((4-x) x)^{2-4 x} \, dx+12 \int \exp \left (\frac {1}{4} \left (-9+24 x-16 x^2-4 \log ^2(-((-4+x) x))\right )\right ) ((4-x) x)^{2-4 x} \left (-2-3 x+x^2\right ) \log ((4-x) x) \, dx+24 \int \exp \left (\frac {1}{4} \left (-9+24 x-16 x^2-4 \log ^2(-((-4+x) x))\right )\right ) x^3 ((4-x) x)^{2-4 x} \, dx+36 \int \exp \left (\frac {1}{4} \left (-9+24 x-16 x^2-4 \log ^2(-((-4+x) x))\right )\right ) ((4-x) x)^{2-4 x} \, dx-90 \int \exp \left (\frac {1}{4} \left (-9+24 x-16 x^2-4 \log ^2(-((-4+x) x))\right )\right ) x^2 ((4-x) x)^{2-4 x} \, dx\\ &=6 \int \exp \left (\frac {1}{4} \left (-9+24 x-16 x^2-4 \log ^2(-((-4+x) x))\right )\right ) x ((4-x) x)^{2-4 x} \, dx+12 \int \left (-2 \exp \left (\frac {1}{4} \left (-9+24 x-16 x^2-4 \log ^2(-((-4+x) x))\right )\right ) ((4-x) x)^{2-4 x} \log ((4-x) x)-3 \exp \left (\frac {1}{4} \left (-9+24 x-16 x^2-4 \log ^2(-((-4+x) x))\right )\right ) x ((4-x) x)^{2-4 x} \log ((4-x) x)+\exp \left (\frac {1}{4} \left (-9+24 x-16 x^2-4 \log ^2(-((-4+x) x))\right )\right ) x^2 ((4-x) x)^{2-4 x} \log ((4-x) x)\right ) \, dx+24 \int \exp \left (\frac {1}{4} \left (-9+24 x-16 x^2-4 \log ^2(-((-4+x) x))\right )\right ) x^3 ((4-x) x)^{2-4 x} \, dx+36 \int \exp \left (\frac {1}{4} \left (-9+24 x-16 x^2-4 \log ^2(-((-4+x) x))\right )\right ) ((4-x) x)^{2-4 x} \, dx-90 \int \exp \left (\frac {1}{4} \left (-9+24 x-16 x^2-4 \log ^2(-((-4+x) x))\right )\right ) x^2 ((4-x) x)^{2-4 x} \, dx\\ &=6 \int \exp \left (\frac {1}{4} \left (-9+24 x-16 x^2-4 \log ^2(-((-4+x) x))\right )\right ) x ((4-x) x)^{2-4 x} \, dx+12 \int \exp \left (\frac {1}{4} \left (-9+24 x-16 x^2-4 \log ^2(-((-4+x) x))\right )\right ) x^2 ((4-x) x)^{2-4 x} \log ((4-x) x) \, dx+24 \int \exp \left (\frac {1}{4} \left (-9+24 x-16 x^2-4 \log ^2(-((-4+x) x))\right )\right ) x^3 ((4-x) x)^{2-4 x} \, dx-24 \int \exp \left (\frac {1}{4} \left (-9+24 x-16 x^2-4 \log ^2(-((-4+x) x))\right )\right ) ((4-x) x)^{2-4 x} \log ((4-x) x) \, dx+36 \int \exp \left (\frac {1}{4} \left (-9+24 x-16 x^2-4 \log ^2(-((-4+x) x))\right )\right ) ((4-x) x)^{2-4 x} \, dx-36 \int \exp \left (\frac {1}{4} \left (-9+24 x-16 x^2-4 \log ^2(-((-4+x) x))\right )\right ) x ((4-x) x)^{2-4 x} \log ((4-x) x) \, dx-90 \int \exp \left (\frac {1}{4} \left (-9+24 x-16 x^2-4 \log ^2(-((-4+x) x))\right )\right ) x^2 ((4-x) x)^{2-4 x} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 1.89, size = 45, normalized size = 1.67 \begin {gather*} -3 e^{-\frac {9}{4}+6 x-4 x^2-\log ^2(-((-4+x) x))} (-4+x)^3 x^3 (-((-4+x) x))^{-4 x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.69, size = 44, normalized size = 1.63 \begin {gather*} 3 \, e^{\left (-4 \, x^{2} - {\left (4 \, x - 3\right )} \log \left (-x^{2} + 4 \, x\right ) - \log \left (-x^{2} + 4 \, x\right )^{2} + 6 \, x - \frac {9}{4}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.99, size = 52, normalized size = 1.93 \begin {gather*} 3 \, e^{\left (-4 \, x^{2} - 4 \, x \log \left (-x^{2} + 4 \, x\right ) - \log \left (-x^{2} + 4 \, x\right )^{2} + 6 \, x + 3 \, \log \left (-x^{2} + 4 \, x\right ) - \frac {9}{4}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.18, size = 45, normalized size = 1.67
method | result | size |
norman | \(3 \,{\mathrm e}^{-\ln \left (-x^{2}+4 x \right )^{2}+\left (16 x -12\right ) \ln \left (\frac {1}{\left (-x^{2}+4 x \right )^{\frac {1}{4}}}\right )-4 x^{2}+6 x -\frac {9}{4}}\) | \(45\) |
risch | \(3 \left (-x^{2}+4 x \right )^{3-4 x} {\mathrm e}^{-\ln \left (-x^{2}+4 x \right )^{2}-\frac {9}{4}-4 x^{2}+6 x}\) | \(45\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.53, size = 72, normalized size = 2.67 \begin {gather*} -3 \, {\left (x^{6} - 12 \, x^{5} + 48 \, x^{4} - 64 \, x^{3}\right )} e^{\left (-4 \, x^{2} - 4 \, x \log \relax (x) - \log \relax (x)^{2} - 4 \, x \log \left (-x + 4\right ) - 2 \, \log \relax (x) \log \left (-x + 4\right ) - \log \left (-x + 4\right )^{2} + 6 \, x - \frac {9}{4}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.98, size = 181, normalized size = 6.70 \begin {gather*} \frac {192\,x^3\,{\mathrm {e}}^{-4\,x^2+6\,x-{\ln \left (4\,x-x^2\right )}^2-\frac {9}{4}}}{{\left (4\,x-x^2\right )}^{4\,x}}-\frac {144\,x^4\,{\mathrm {e}}^{-4\,x^2+6\,x-{\ln \left (4\,x-x^2\right )}^2-\frac {9}{4}}}{{\left (4\,x-x^2\right )}^{4\,x}}+\frac {36\,x^5\,{\mathrm {e}}^{-4\,x^2+6\,x-{\ln \left (4\,x-x^2\right )}^2-\frac {9}{4}}}{{\left (4\,x-x^2\right )}^{4\,x}}-\frac {3\,x^6\,{\mathrm {e}}^{-4\,x^2+6\,x-{\ln \left (4\,x-x^2\right )}^2-\frac {9}{4}}}{{\left (4\,x-x^2\right )}^{4\,x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.64, size = 37, normalized size = 1.37 \begin {gather*} 3 e^{- 4 x^{2} + 6 x - \left (4 x - 3\right ) \log {\left (- x^{2} + 4 x \right )} - \log {\left (- x^{2} + 4 x \right )}^{2} - \frac {9}{4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________