3.75.100 \(\int \frac {e^{\frac {1}{4} (-9+24 x-16 x^2-(-12+16 x) \log (4 x-x^2)-4 \log ^2(4 x-x^2))} (-36-6 x+90 x^2-24 x^3+(24+36 x-12 x^2) \log (4 x-x^2))}{-4 x+x^2} \, dx\)

Optimal. Leaf size=27 \[ 1+3 e^{-\left (-\frac {3}{2}+2 x+\log \left (4 x-x^2\right )\right )^2} \]

________________________________________________________________________________________

Rubi [F]  time = 7.23, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\exp \left (\frac {1}{4} \left (-9+24 x-16 x^2-(-12+16 x) \log \left (4 x-x^2\right )-4 \log ^2\left (4 x-x^2\right )\right )\right ) \left (-36-6 x+90 x^2-24 x^3+\left (24+36 x-12 x^2\right ) \log \left (4 x-x^2\right )\right )}{-4 x+x^2} \, dx \end {gather*}

Verification is not applicable to the result.

[In]

Int[(E^((-9 + 24*x - 16*x^2 - (-12 + 16*x)*Log[4*x - x^2] - 4*Log[4*x - x^2]^2)/4)*(-36 - 6*x + 90*x^2 - 24*x^
3 + (24 + 36*x - 12*x^2)*Log[4*x - x^2]))/(-4*x + x^2),x]

[Out]

36*Defer[Int][E^((-9 + 24*x - 16*x^2 - 4*Log[-((-4 + x)*x)]^2)/4)*((4 - x)*x)^(2 - 4*x), x] + 6*Defer[Int][E^(
(-9 + 24*x - 16*x^2 - 4*Log[-((-4 + x)*x)]^2)/4)*x*((4 - x)*x)^(2 - 4*x), x] - 90*Defer[Int][E^((-9 + 24*x - 1
6*x^2 - 4*Log[-((-4 + x)*x)]^2)/4)*x^2*((4 - x)*x)^(2 - 4*x), x] + 24*Defer[Int][E^((-9 + 24*x - 16*x^2 - 4*Lo
g[-((-4 + x)*x)]^2)/4)*x^3*((4 - x)*x)^(2 - 4*x), x] - 24*Defer[Int][E^((-9 + 24*x - 16*x^2 - 4*Log[-((-4 + x)
*x)]^2)/4)*((4 - x)*x)^(2 - 4*x)*Log[(4 - x)*x], x] - 36*Defer[Int][E^((-9 + 24*x - 16*x^2 - 4*Log[-((-4 + x)*
x)]^2)/4)*x*((4 - x)*x)^(2 - 4*x)*Log[(4 - x)*x], x] + 12*Defer[Int][E^((-9 + 24*x - 16*x^2 - 4*Log[-((-4 + x)
*x)]^2)/4)*x^2*((4 - x)*x)^(2 - 4*x)*Log[(4 - x)*x], x]

Rubi steps

\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {\exp \left (\frac {1}{4} \left (-9+24 x-16 x^2-(-12+16 x) \log \left (4 x-x^2\right )-4 \log ^2\left (4 x-x^2\right )\right )\right ) \left (-36-6 x+90 x^2-24 x^3+\left (24+36 x-12 x^2\right ) \log \left (4 x-x^2\right )\right )}{(-4+x) x} \, dx\\ &=\int 6 \exp \left (\frac {1}{4} \left (-9+24 x-16 x^2-4 \log ^2(-((-4+x) x))\right )\right ) ((4-x) x)^{2-4 x} \left (2+3 x-x^2\right ) (3-4 x-2 \log (-((-4+x) x))) \, dx\\ &=6 \int \exp \left (\frac {1}{4} \left (-9+24 x-16 x^2-4 \log ^2(-((-4+x) x))\right )\right ) ((4-x) x)^{2-4 x} \left (2+3 x-x^2\right ) (3-4 x-2 \log (-((-4+x) x))) \, dx\\ &=6 \int \left (6 \exp \left (\frac {1}{4} \left (-9+24 x-16 x^2-4 \log ^2(-((-4+x) x))\right )\right ) ((4-x) x)^{2-4 x}+\exp \left (\frac {1}{4} \left (-9+24 x-16 x^2-4 \log ^2(-((-4+x) x))\right )\right ) x ((4-x) x)^{2-4 x}-15 \exp \left (\frac {1}{4} \left (-9+24 x-16 x^2-4 \log ^2(-((-4+x) x))\right )\right ) x^2 ((4-x) x)^{2-4 x}+4 \exp \left (\frac {1}{4} \left (-9+24 x-16 x^2-4 \log ^2(-((-4+x) x))\right )\right ) x^3 ((4-x) x)^{2-4 x}+2 \exp \left (\frac {1}{4} \left (-9+24 x-16 x^2-4 \log ^2(-((-4+x) x))\right )\right ) ((4-x) x)^{2-4 x} \left (-2-3 x+x^2\right ) \log ((4-x) x)\right ) \, dx\\ &=6 \int \exp \left (\frac {1}{4} \left (-9+24 x-16 x^2-4 \log ^2(-((-4+x) x))\right )\right ) x ((4-x) x)^{2-4 x} \, dx+12 \int \exp \left (\frac {1}{4} \left (-9+24 x-16 x^2-4 \log ^2(-((-4+x) x))\right )\right ) ((4-x) x)^{2-4 x} \left (-2-3 x+x^2\right ) \log ((4-x) x) \, dx+24 \int \exp \left (\frac {1}{4} \left (-9+24 x-16 x^2-4 \log ^2(-((-4+x) x))\right )\right ) x^3 ((4-x) x)^{2-4 x} \, dx+36 \int \exp \left (\frac {1}{4} \left (-9+24 x-16 x^2-4 \log ^2(-((-4+x) x))\right )\right ) ((4-x) x)^{2-4 x} \, dx-90 \int \exp \left (\frac {1}{4} \left (-9+24 x-16 x^2-4 \log ^2(-((-4+x) x))\right )\right ) x^2 ((4-x) x)^{2-4 x} \, dx\\ &=6 \int \exp \left (\frac {1}{4} \left (-9+24 x-16 x^2-4 \log ^2(-((-4+x) x))\right )\right ) x ((4-x) x)^{2-4 x} \, dx+12 \int \left (-2 \exp \left (\frac {1}{4} \left (-9+24 x-16 x^2-4 \log ^2(-((-4+x) x))\right )\right ) ((4-x) x)^{2-4 x} \log ((4-x) x)-3 \exp \left (\frac {1}{4} \left (-9+24 x-16 x^2-4 \log ^2(-((-4+x) x))\right )\right ) x ((4-x) x)^{2-4 x} \log ((4-x) x)+\exp \left (\frac {1}{4} \left (-9+24 x-16 x^2-4 \log ^2(-((-4+x) x))\right )\right ) x^2 ((4-x) x)^{2-4 x} \log ((4-x) x)\right ) \, dx+24 \int \exp \left (\frac {1}{4} \left (-9+24 x-16 x^2-4 \log ^2(-((-4+x) x))\right )\right ) x^3 ((4-x) x)^{2-4 x} \, dx+36 \int \exp \left (\frac {1}{4} \left (-9+24 x-16 x^2-4 \log ^2(-((-4+x) x))\right )\right ) ((4-x) x)^{2-4 x} \, dx-90 \int \exp \left (\frac {1}{4} \left (-9+24 x-16 x^2-4 \log ^2(-((-4+x) x))\right )\right ) x^2 ((4-x) x)^{2-4 x} \, dx\\ &=6 \int \exp \left (\frac {1}{4} \left (-9+24 x-16 x^2-4 \log ^2(-((-4+x) x))\right )\right ) x ((4-x) x)^{2-4 x} \, dx+12 \int \exp \left (\frac {1}{4} \left (-9+24 x-16 x^2-4 \log ^2(-((-4+x) x))\right )\right ) x^2 ((4-x) x)^{2-4 x} \log ((4-x) x) \, dx+24 \int \exp \left (\frac {1}{4} \left (-9+24 x-16 x^2-4 \log ^2(-((-4+x) x))\right )\right ) x^3 ((4-x) x)^{2-4 x} \, dx-24 \int \exp \left (\frac {1}{4} \left (-9+24 x-16 x^2-4 \log ^2(-((-4+x) x))\right )\right ) ((4-x) x)^{2-4 x} \log ((4-x) x) \, dx+36 \int \exp \left (\frac {1}{4} \left (-9+24 x-16 x^2-4 \log ^2(-((-4+x) x))\right )\right ) ((4-x) x)^{2-4 x} \, dx-36 \int \exp \left (\frac {1}{4} \left (-9+24 x-16 x^2-4 \log ^2(-((-4+x) x))\right )\right ) x ((4-x) x)^{2-4 x} \log ((4-x) x) \, dx-90 \int \exp \left (\frac {1}{4} \left (-9+24 x-16 x^2-4 \log ^2(-((-4+x) x))\right )\right ) x^2 ((4-x) x)^{2-4 x} \, dx\\ \end {aligned} \end {gather*}

________________________________________________________________________________________

Mathematica [A]  time = 1.89, size = 45, normalized size = 1.67 \begin {gather*} -3 e^{-\frac {9}{4}+6 x-4 x^2-\log ^2(-((-4+x) x))} (-4+x)^3 x^3 (-((-4+x) x))^{-4 x} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(E^((-9 + 24*x - 16*x^2 - (-12 + 16*x)*Log[4*x - x^2] - 4*Log[4*x - x^2]^2)/4)*(-36 - 6*x + 90*x^2 -
 24*x^3 + (24 + 36*x - 12*x^2)*Log[4*x - x^2]))/(-4*x + x^2),x]

[Out]

(-3*E^(-9/4 + 6*x - 4*x^2 - Log[-((-4 + x)*x)]^2)*(-4 + x)^3*x^3)/(-((-4 + x)*x))^(4*x)

________________________________________________________________________________________

fricas [A]  time = 0.69, size = 44, normalized size = 1.63 \begin {gather*} 3 \, e^{\left (-4 \, x^{2} - {\left (4 \, x - 3\right )} \log \left (-x^{2} + 4 \, x\right ) - \log \left (-x^{2} + 4 \, x\right )^{2} + 6 \, x - \frac {9}{4}\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((-12*x^2+36*x+24)*log(-x^2+4*x)-24*x^3+90*x^2-6*x-36)/(x^2-4*x)/exp(log(-x^2+4*x)^2+1/4*(16*x-12)*l
og(-x^2+4*x)+4*x^2-6*x+9/4),x, algorithm="fricas")

[Out]

3*e^(-4*x^2 - (4*x - 3)*log(-x^2 + 4*x) - log(-x^2 + 4*x)^2 + 6*x - 9/4)

________________________________________________________________________________________

giac [A]  time = 0.99, size = 52, normalized size = 1.93 \begin {gather*} 3 \, e^{\left (-4 \, x^{2} - 4 \, x \log \left (-x^{2} + 4 \, x\right ) - \log \left (-x^{2} + 4 \, x\right )^{2} + 6 \, x + 3 \, \log \left (-x^{2} + 4 \, x\right ) - \frac {9}{4}\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((-12*x^2+36*x+24)*log(-x^2+4*x)-24*x^3+90*x^2-6*x-36)/(x^2-4*x)/exp(log(-x^2+4*x)^2+1/4*(16*x-12)*l
og(-x^2+4*x)+4*x^2-6*x+9/4),x, algorithm="giac")

[Out]

3*e^(-4*x^2 - 4*x*log(-x^2 + 4*x) - log(-x^2 + 4*x)^2 + 6*x + 3*log(-x^2 + 4*x) - 9/4)

________________________________________________________________________________________

maple [A]  time = 0.18, size = 45, normalized size = 1.67




method result size



norman \(3 \,{\mathrm e}^{-\ln \left (-x^{2}+4 x \right )^{2}+\left (16 x -12\right ) \ln \left (\frac {1}{\left (-x^{2}+4 x \right )^{\frac {1}{4}}}\right )-4 x^{2}+6 x -\frac {9}{4}}\) \(45\)
risch \(3 \left (-x^{2}+4 x \right )^{3-4 x} {\mathrm e}^{-\ln \left (-x^{2}+4 x \right )^{2}-\frac {9}{4}-4 x^{2}+6 x}\) \(45\)



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((-12*x^2+36*x+24)*ln(-x^2+4*x)-24*x^3+90*x^2-6*x-36)/(x^2-4*x)/exp(ln(-x^2+4*x)^2+1/4*(16*x-12)*ln(-x^2+4
*x)+4*x^2-6*x+9/4),x,method=_RETURNVERBOSE)

[Out]

3/exp(ln(-x^2+4*x)^2+1/4*(16*x-12)*ln(-x^2+4*x)+4*x^2-6*x+9/4)

________________________________________________________________________________________

maxima [B]  time = 0.53, size = 72, normalized size = 2.67 \begin {gather*} -3 \, {\left (x^{6} - 12 \, x^{5} + 48 \, x^{4} - 64 \, x^{3}\right )} e^{\left (-4 \, x^{2} - 4 \, x \log \relax (x) - \log \relax (x)^{2} - 4 \, x \log \left (-x + 4\right ) - 2 \, \log \relax (x) \log \left (-x + 4\right ) - \log \left (-x + 4\right )^{2} + 6 \, x - \frac {9}{4}\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((-12*x^2+36*x+24)*log(-x^2+4*x)-24*x^3+90*x^2-6*x-36)/(x^2-4*x)/exp(log(-x^2+4*x)^2+1/4*(16*x-12)*l
og(-x^2+4*x)+4*x^2-6*x+9/4),x, algorithm="maxima")

[Out]

-3*(x^6 - 12*x^5 + 48*x^4 - 64*x^3)*e^(-4*x^2 - 4*x*log(x) - log(x)^2 - 4*x*log(-x + 4) - 2*log(x)*log(-x + 4)
 - log(-x + 4)^2 + 6*x - 9/4)

________________________________________________________________________________________

mupad [B]  time = 4.98, size = 181, normalized size = 6.70 \begin {gather*} \frac {192\,x^3\,{\mathrm {e}}^{-4\,x^2+6\,x-{\ln \left (4\,x-x^2\right )}^2-\frac {9}{4}}}{{\left (4\,x-x^2\right )}^{4\,x}}-\frac {144\,x^4\,{\mathrm {e}}^{-4\,x^2+6\,x-{\ln \left (4\,x-x^2\right )}^2-\frac {9}{4}}}{{\left (4\,x-x^2\right )}^{4\,x}}+\frac {36\,x^5\,{\mathrm {e}}^{-4\,x^2+6\,x-{\ln \left (4\,x-x^2\right )}^2-\frac {9}{4}}}{{\left (4\,x-x^2\right )}^{4\,x}}-\frac {3\,x^6\,{\mathrm {e}}^{-4\,x^2+6\,x-{\ln \left (4\,x-x^2\right )}^2-\frac {9}{4}}}{{\left (4\,x-x^2\right )}^{4\,x}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((exp(6*x - log(4*x - x^2)^2 - (log(4*x - x^2)*(16*x - 12))/4 - 4*x^2 - 9/4)*(6*x - log(4*x - x^2)*(36*x -
12*x^2 + 24) - 90*x^2 + 24*x^3 + 36))/(4*x - x^2),x)

[Out]

(192*x^3*exp(6*x - log(4*x - x^2)^2 - 4*x^2 - 9/4))/(4*x - x^2)^(4*x) - (144*x^4*exp(6*x - log(4*x - x^2)^2 -
4*x^2 - 9/4))/(4*x - x^2)^(4*x) + (36*x^5*exp(6*x - log(4*x - x^2)^2 - 4*x^2 - 9/4))/(4*x - x^2)^(4*x) - (3*x^
6*exp(6*x - log(4*x - x^2)^2 - 4*x^2 - 9/4))/(4*x - x^2)^(4*x)

________________________________________________________________________________________

sympy [A]  time = 0.64, size = 37, normalized size = 1.37 \begin {gather*} 3 e^{- 4 x^{2} + 6 x - \left (4 x - 3\right ) \log {\left (- x^{2} + 4 x \right )} - \log {\left (- x^{2} + 4 x \right )}^{2} - \frac {9}{4}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((-12*x**2+36*x+24)*ln(-x**2+4*x)-24*x**3+90*x**2-6*x-36)/(x**2-4*x)/exp(ln(-x**2+4*x)**2+1/4*(16*x-
12)*ln(-x**2+4*x)+4*x**2-6*x+9/4),x)

[Out]

3*exp(-4*x**2 + 6*x - (4*x - 3)*log(-x**2 + 4*x) - log(-x**2 + 4*x)**2 - 9/4)

________________________________________________________________________________________