3.75.95 \(\int \frac {80 e^{-2 e^5+2 x}+40 e^{-e^5+x} \log (5)+5 \log ^2(5)+e^{\frac {5 e^{-e^5+x}+2 e^{-e^5+x} \log (\log (4))}{4 e^{-e^5+x}+\log (5)}} (5 e^{-e^5+x} \log (5)+2 e^{-e^5+x} \log (5) \log (\log (4)))}{16 e^{-2 e^5+2 x}+8 e^{-e^5+x} \log (5)+\log ^2(5)} \, dx\)

Optimal. Leaf size=30 \[ e^{\frac {5+2 \log (\log (4))}{4+e^{e^5-x} \log (5)}}+5 x \]

________________________________________________________________________________________

Rubi [F]  time = 1.66, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {80 e^{-2 e^5+2 x}+40 e^{-e^5+x} \log (5)+5 \log ^2(5)+\exp \left (\frac {5 e^{-e^5+x}+2 e^{-e^5+x} \log (\log (4))}{4 e^{-e^5+x}+\log (5)}\right ) \left (5 e^{-e^5+x} \log (5)+2 e^{-e^5+x} \log (5) \log (\log (4))\right )}{16 e^{-2 e^5+2 x}+8 e^{-e^5+x} \log (5)+\log ^2(5)} \, dx \end {gather*}

Verification is not applicable to the result.

[In]

Int[(80*E^(-2*E^5 + 2*x) + 40*E^(-E^5 + x)*Log[5] + 5*Log[5]^2 + E^((5*E^(-E^5 + x) + 2*E^(-E^5 + x)*Log[Log[4
]])/(4*E^(-E^5 + x) + Log[5]))*(5*E^(-E^5 + x)*Log[5] + 2*E^(-E^5 + x)*Log[5]*Log[Log[4]]))/(16*E^(-2*E^5 + 2*
x) + 8*E^(-E^5 + x)*Log[5] + Log[5]^2),x]

[Out]

5*x + Log[5]*(5 + 2*Log[Log[4]])*Defer[Subst][Defer[Int][(E^((5*x)/(4*x + Log[5]))*Log[4]^((2*x)/(4*x + Log[5]
)))/(4*x + Log[5])^2, x], x, E^((-2*E^5 + 2*x)/2)]

Rubi steps

\begin {gather*} \begin {aligned} \text {integral} &=\operatorname {Subst}\left (\int \frac {80 x^2+5 \log ^2(5)+x \log (5) \left (40+e^{\frac {5 x}{4 x+\log (5)}} \log ^{\frac {2 x}{4 x+\log (5)}}(4) (5+2 \log (\log (4)))\right )}{x (4 x+\log (5))^2} \, dx,x,e^{\frac {1}{2} \left (-2 e^5+2 x\right )}\right )\\ &=\operatorname {Subst}\left (\int \left (\frac {5}{x}+\frac {e^{\frac {5 x}{4 x+\log (5)}} \log ^{\frac {2 x}{4 x+\log (5)}}(4) \log (5) (5+2 \log (\log (4)))}{(4 x+\log (5))^2}\right ) \, dx,x,e^{\frac {1}{2} \left (-2 e^5+2 x\right )}\right )\\ &=5 x+(\log (5) (5+2 \log (\log (4)))) \operatorname {Subst}\left (\int \frac {e^{\frac {5 x}{4 x+\log (5)}} \log ^{\frac {2 x}{4 x+\log (5)}}(4)}{(4 x+\log (5))^2} \, dx,x,e^{\frac {1}{2} \left (-2 e^5+2 x\right )}\right )\\ \end {aligned} \end {gather*}

________________________________________________________________________________________

Mathematica [B]  time = 0.72, size = 61, normalized size = 2.03 \begin {gather*} 5 x+5^{-\frac {5 e^{e^5}}{4 \left (4 e^x+e^{e^5} \log (5)\right )}} e^{5/4} \log ^{\frac {2 e^x}{4 e^x+e^{e^5} \log (5)}}(4) \end {gather*}

Warning: Unable to verify antiderivative.

[In]

Integrate[(80*E^(-2*E^5 + 2*x) + 40*E^(-E^5 + x)*Log[5] + 5*Log[5]^2 + E^((5*E^(-E^5 + x) + 2*E^(-E^5 + x)*Log
[Log[4]])/(4*E^(-E^5 + x) + Log[5]))*(5*E^(-E^5 + x)*Log[5] + 2*E^(-E^5 + x)*Log[5]*Log[Log[4]]))/(16*E^(-2*E^
5 + 2*x) + 8*E^(-E^5 + x)*Log[5] + Log[5]^2),x]

[Out]

5*x + (E^(5/4)*Log[4]^((2*E^x)/(4*E^x + E^E^5*Log[5])))/5^((5*E^E^5)/(4*(4*E^x + E^E^5*Log[5])))

________________________________________________________________________________________

fricas [A]  time = 0.62, size = 45, normalized size = 1.50 \begin {gather*} 5 \, x + e^{\left (\frac {e^{\left (x - e^{5}\right )} \log \left (4 \, \log \relax (2)^{2}\right ) + 5 \, e^{\left (x - e^{5}\right )}}{4 \, e^{\left (x - e^{5}\right )} + \log \relax (5)}\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((log(5)*exp(-exp(5)+x)*log(4*log(2)^2)+5*log(5)*exp(-exp(5)+x))*exp((exp(-exp(5)+x)*log(4*log(2)^2)
+5*exp(-exp(5)+x))/(4*exp(-exp(5)+x)+log(5)))+80*exp(-exp(5)+x)^2+40*log(5)*exp(-exp(5)+x)+5*log(5)^2)/(16*exp
(-exp(5)+x)^2+8*log(5)*exp(-exp(5)+x)+log(5)^2),x, algorithm="fricas")

[Out]

5*x + e^((e^(x - e^5)*log(4*log(2)^2) + 5*e^(x - e^5))/(4*e^(x - e^5) + log(5)))

________________________________________________________________________________________

giac [B]  time = 0.48, size = 110, normalized size = 3.67 \begin {gather*} {\left (5 \, x e^{x} + 5 \, e^{x} \log \left (4 \, e^{\left (x - e^{5}\right )} + \log \relax (5)\right ) - 5 \, e^{x} \log \left (-4 \, e^{\left (x - e^{5}\right )} - \log \relax (5)\right ) + e^{\left (\frac {4 \, x e^{\left (x - e^{5}\right )} + x \log \relax (5) + 2 \, e^{\left (x - e^{5}\right )} \log \relax (2) + 2 \, e^{\left (x - e^{5}\right )} \log \left (\log \relax (2)\right ) + 5 \, e^{\left (x - e^{5}\right )}}{4 \, e^{\left (x - e^{5}\right )} + \log \relax (5)}\right )}\right )} e^{\left (-x\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((log(5)*exp(-exp(5)+x)*log(4*log(2)^2)+5*log(5)*exp(-exp(5)+x))*exp((exp(-exp(5)+x)*log(4*log(2)^2)
+5*exp(-exp(5)+x))/(4*exp(-exp(5)+x)+log(5)))+80*exp(-exp(5)+x)^2+40*log(5)*exp(-exp(5)+x)+5*log(5)^2)/(16*exp
(-exp(5)+x)^2+8*log(5)*exp(-exp(5)+x)+log(5)^2),x, algorithm="giac")

[Out]

(5*x*e^x + 5*e^x*log(4*e^(x - e^5) + log(5)) - 5*e^x*log(-4*e^(x - e^5) - log(5)) + e^((4*x*e^(x - e^5) + x*lo
g(5) + 2*e^(x - e^5)*log(2) + 2*e^(x - e^5)*log(log(2)) + 5*e^(x - e^5))/(4*e^(x - e^5) + log(5))))*e^(-x)

________________________________________________________________________________________

maple [A]  time = 0.55, size = 39, normalized size = 1.30




method result size



risch \(5 x +{\mathrm e}^{\frac {{\mathrm e}^{-{\mathrm e}^{5}+x} \left (5+2 \ln \relax (2)+2 \ln \left (\ln \relax (2)\right )\right )}{4 \,{\mathrm e}^{-{\mathrm e}^{5}+x}+\ln \relax (5)}}\) \(39\)
norman \(\frac {\ln \relax (5) {\mathrm e}^{\frac {{\mathrm e}^{-{\mathrm e}^{5}+x} \ln \left (4 \ln \relax (2)^{2}\right )+5 \,{\mathrm e}^{-{\mathrm e}^{5}+x}}{4 \,{\mathrm e}^{-{\mathrm e}^{5}+x}+\ln \relax (5)}}+20 x \,{\mathrm e}^{-{\mathrm e}^{5}+x}+5 x \ln \relax (5)+4 \,{\mathrm e}^{-{\mathrm e}^{5}+x} {\mathrm e}^{\frac {{\mathrm e}^{-{\mathrm e}^{5}+x} \ln \left (4 \ln \relax (2)^{2}\right )+5 \,{\mathrm e}^{-{\mathrm e}^{5}+x}}{4 \,{\mathrm e}^{-{\mathrm e}^{5}+x}+\ln \relax (5)}}}{4 \,{\mathrm e}^{-{\mathrm e}^{5}+x}+\ln \relax (5)}\) \(126\)
derivativedivides \(\text {Expression too large to display}\) \(2274\)
default \(\text {Expression too large to display}\) \(2274\)



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((ln(5)*exp(-exp(5)+x)*ln(4*ln(2)^2)+5*ln(5)*exp(-exp(5)+x))*exp((exp(-exp(5)+x)*ln(4*ln(2)^2)+5*exp(-exp(
5)+x))/(4*exp(-exp(5)+x)+ln(5)))+80*exp(-exp(5)+x)^2+40*ln(5)*exp(-exp(5)+x)+5*ln(5)^2)/(16*exp(-exp(5)+x)^2+8
*ln(5)*exp(-exp(5)+x)+ln(5)^2),x,method=_RETURNVERBOSE)

[Out]

5*x+exp(exp(-exp(5)+x)*(5+2*ln(2)+2*ln(ln(2)))/(4*exp(-exp(5)+x)+ln(5)))

________________________________________________________________________________________

maxima [B]  time = 0.49, size = 279, normalized size = 9.30 \begin {gather*} 5 \, {\left (\frac {1}{4 \, e^{\left (x - e^{5}\right )} \log \relax (5) + \log \relax (5)^{2}} + \frac {x - e^{5}}{\log \relax (5)^{2}} - \frac {\log \left (4 \, e^{\left (x - e^{5}\right )} + \log \relax (5)\right )}{\log \relax (5)^{2}}\right )} \log \relax (5)^{2} + \frac {\sqrt {2} e^{\left (-\frac {\log \relax (5) \log \relax (2)}{2 \, {\left (4 \, e^{\left (x - e^{5}\right )} + \log \relax (5)\right )}} - \frac {\log \relax (5) \log \left (\log \relax (2)\right )}{2 \, {\left (4 \, e^{\left (x - e^{5}\right )} + \log \relax (5)\right )}} - \frac {5 \, \log \relax (5)}{4 \, {\left (4 \, e^{\left (x - e^{5}\right )} + \log \relax (5)\right )}} + \frac {5}{4}\right )} \log \relax (5) \sqrt {\log \relax (2)} \log \left (4 \, \log \relax (2)^{2}\right )}{{\left (2 \, \log \left (\log \relax (2)\right ) + 5\right )} \log \relax (5) + 2 \, \log \relax (5) \log \relax (2)} + \frac {5 \, \sqrt {2} e^{\left (-\frac {\log \relax (5) \log \relax (2)}{2 \, {\left (4 \, e^{\left (x - e^{5}\right )} + \log \relax (5)\right )}} - \frac {\log \relax (5) \log \left (\log \relax (2)\right )}{2 \, {\left (4 \, e^{\left (x - e^{5}\right )} + \log \relax (5)\right )}} - \frac {5 \, \log \relax (5)}{4 \, {\left (4 \, e^{\left (x - e^{5}\right )} + \log \relax (5)\right )}} + \frac {5}{4}\right )} \log \relax (5) \sqrt {\log \relax (2)}}{{\left (2 \, \log \left (\log \relax (2)\right ) + 5\right )} \log \relax (5) + 2 \, \log \relax (5) \log \relax (2)} - \frac {5 \, \log \relax (5)}{4 \, e^{\left (x - e^{5}\right )} + \log \relax (5)} + 5 \, \log \left (4 \, e^{\left (x - e^{5}\right )} + \log \relax (5)\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((log(5)*exp(-exp(5)+x)*log(4*log(2)^2)+5*log(5)*exp(-exp(5)+x))*exp((exp(-exp(5)+x)*log(4*log(2)^2)
+5*exp(-exp(5)+x))/(4*exp(-exp(5)+x)+log(5)))+80*exp(-exp(5)+x)^2+40*log(5)*exp(-exp(5)+x)+5*log(5)^2)/(16*exp
(-exp(5)+x)^2+8*log(5)*exp(-exp(5)+x)+log(5)^2),x, algorithm="maxima")

[Out]

5*(1/(4*e^(x - e^5)*log(5) + log(5)^2) + (x - e^5)/log(5)^2 - log(4*e^(x - e^5) + log(5))/log(5)^2)*log(5)^2 +
 sqrt(2)*e^(-1/2*log(5)*log(2)/(4*e^(x - e^5) + log(5)) - 1/2*log(5)*log(log(2))/(4*e^(x - e^5) + log(5)) - 5/
4*log(5)/(4*e^(x - e^5) + log(5)) + 5/4)*log(5)*sqrt(log(2))*log(4*log(2)^2)/((2*log(log(2)) + 5)*log(5) + 2*l
og(5)*log(2)) + 5*sqrt(2)*e^(-1/2*log(5)*log(2)/(4*e^(x - e^5) + log(5)) - 1/2*log(5)*log(log(2))/(4*e^(x - e^
5) + log(5)) - 5/4*log(5)/(4*e^(x - e^5) + log(5)) + 5/4)*log(5)*sqrt(log(2))/((2*log(log(2)) + 5)*log(5) + 2*
log(5)*log(2)) - 5*log(5)/(4*e^(x - e^5) + log(5)) + 5*log(4*e^(x - e^5) + log(5))

________________________________________________________________________________________

mupad [B]  time = 5.07, size = 80, normalized size = 2.67 \begin {gather*} 5\,x+2^{\frac {2\,{\mathrm {e}}^{x-{\mathrm {e}}^5}}{4\,{\mathrm {e}}^{x-{\mathrm {e}}^5}+\ln \relax (5)}}\,{\mathrm {e}}^{\frac {5\,{\mathrm {e}}^{-{\mathrm {e}}^5}\,{\mathrm {e}}^x}{\ln \relax (5)+4\,{\mathrm {e}}^{-{\mathrm {e}}^5}\,{\mathrm {e}}^x}}\,{\ln \relax (2)}^{\frac {2\,{\mathrm {e}}^{x-{\mathrm {e}}^5}}{4\,{\mathrm {e}}^{x-{\mathrm {e}}^5}+\ln \relax (5)}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((80*exp(2*x - 2*exp(5)) + 5*log(5)^2 + 40*exp(x - exp(5))*log(5) + exp((5*exp(x - exp(5)) + exp(x - exp(5)
)*log(4*log(2)^2))/(4*exp(x - exp(5)) + log(5)))*(5*exp(x - exp(5))*log(5) + exp(x - exp(5))*log(5)*log(4*log(
2)^2)))/(16*exp(2*x - 2*exp(5)) + log(5)^2 + 8*exp(x - exp(5))*log(5)),x)

[Out]

5*x + 2^((2*exp(x - exp(5)))/(4*exp(x - exp(5)) + log(5)))*exp((5*exp(-exp(5))*exp(x))/(log(5) + 4*exp(-exp(5)
)*exp(x)))*log(2)^((2*exp(x - exp(5)))/(4*exp(x - exp(5)) + log(5)))

________________________________________________________________________________________

sympy [A]  time = 0.44, size = 39, normalized size = 1.30 \begin {gather*} 5 x + e^{\frac {e^{x - e^{5}} \log {\left (4 \log {\relax (2 )}^{2} \right )} + 5 e^{x - e^{5}}}{4 e^{x - e^{5}} + \log {\relax (5 )}}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((ln(5)*exp(-exp(5)+x)*ln(4*ln(2)**2)+5*ln(5)*exp(-exp(5)+x))*exp((exp(-exp(5)+x)*ln(4*ln(2)**2)+5*e
xp(-exp(5)+x))/(4*exp(-exp(5)+x)+ln(5)))+80*exp(-exp(5)+x)**2+40*ln(5)*exp(-exp(5)+x)+5*ln(5)**2)/(16*exp(-exp
(5)+x)**2+8*ln(5)*exp(-exp(5)+x)+ln(5)**2),x)

[Out]

5*x + exp((exp(x - exp(5))*log(4*log(2)**2) + 5*exp(x - exp(5)))/(4*exp(x - exp(5)) + log(5)))

________________________________________________________________________________________