Optimal. Leaf size=33 \[ \frac {x^2}{-x^2+\log \left (-e^5+\frac {3}{x}\right )+\log \left (\frac {e^x x}{6}\right )} \]
________________________________________________________________________________________
Rubi [F] time = 1.59, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {3 x^2+e^5 \left (-x^2-x^3\right )+\left (-6 x+2 e^5 x^2\right ) \log \left (\frac {e^x x}{6}\right )+\left (-6 x+2 e^5 x^2\right ) \log \left (\frac {3-e^5 x}{x}\right )}{-3 x^4+e^5 x^5+\left (-3+e^5 x\right ) \log ^2\left (\frac {e^x x}{6}\right )+\left (6 x^2-2 e^5 x^3\right ) \log \left (\frac {3-e^5 x}{x}\right )+\left (-3+e^5 x\right ) \log ^2\left (\frac {3-e^5 x}{x}\right )+\log \left (\frac {e^x x}{6}\right ) \left (6 x^2-2 e^5 x^3+\left (-6+2 e^5 x\right ) \log \left (\frac {3-e^5 x}{x}\right )\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {x \left (x \left (-3+e^5 (1+x)\right )+\left (6-2 e^5 x\right ) \log \left (-e^5+\frac {3}{x}\right )+\left (6-2 e^5 x\right ) \log \left (\frac {e^x x}{6}\right )\right )}{\left (3-e^5 x\right ) \left (x^2-\log \left (-e^5+\frac {3}{x}\right )-\log \left (\frac {e^x x}{6}\right )\right )^2} \, dx\\ &=\int \left (\frac {x^2 \left (-3+e^5+\left (6+e^5\right ) x-2 e^5 x^2\right )}{\left (3-e^5 x\right ) \left (x^2-\log \left (-e^5+\frac {3}{x}\right )-\log \left (\frac {e^x x}{6}\right )\right )^2}-\frac {2 x}{x^2-\log \left (-e^5+\frac {3}{x}\right )-\log \left (\frac {e^x x}{6}\right )}\right ) \, dx\\ &=-\left (2 \int \frac {x}{x^2-\log \left (-e^5+\frac {3}{x}\right )-\log \left (\frac {e^x x}{6}\right )} \, dx\right )+\int \frac {x^2 \left (-3+e^5+\left (6+e^5\right ) x-2 e^5 x^2\right )}{\left (3-e^5 x\right ) \left (x^2-\log \left (-e^5+\frac {3}{x}\right )-\log \left (\frac {e^x x}{6}\right )\right )^2} \, dx\\ &=-\left (2 \int \frac {x}{x^2-\log \left (-e^5+\frac {3}{x}\right )-\log \left (\frac {e^x x}{6}\right )} \, dx\right )+\int \left (-\frac {3}{e^5 \left (x^2-\log \left (-e^5+\frac {3}{x}\right )-\log \left (\frac {e^x x}{6}\right )\right )^2}-\frac {x}{\left (x^2-\log \left (-e^5+\frac {3}{x}\right )-\log \left (\frac {e^x x}{6}\right )\right )^2}-\frac {x^2}{\left (x^2-\log \left (-e^5+\frac {3}{x}\right )-\log \left (\frac {e^x x}{6}\right )\right )^2}+\frac {2 x^3}{\left (x^2-\log \left (-e^5+\frac {3}{x}\right )-\log \left (\frac {e^x x}{6}\right )\right )^2}-\frac {9}{e^5 \left (-3+e^5 x\right ) \left (x^2-\log \left (-e^5+\frac {3}{x}\right )-\log \left (\frac {e^x x}{6}\right )\right )^2}\right ) \, dx\\ &=2 \int \frac {x^3}{\left (x^2-\log \left (-e^5+\frac {3}{x}\right )-\log \left (\frac {e^x x}{6}\right )\right )^2} \, dx-2 \int \frac {x}{x^2-\log \left (-e^5+\frac {3}{x}\right )-\log \left (\frac {e^x x}{6}\right )} \, dx-\frac {3 \int \frac {1}{\left (x^2-\log \left (-e^5+\frac {3}{x}\right )-\log \left (\frac {e^x x}{6}\right )\right )^2} \, dx}{e^5}-\frac {9 \int \frac {1}{\left (-3+e^5 x\right ) \left (x^2-\log \left (-e^5+\frac {3}{x}\right )-\log \left (\frac {e^x x}{6}\right )\right )^2} \, dx}{e^5}-\int \frac {x}{\left (x^2-\log \left (-e^5+\frac {3}{x}\right )-\log \left (\frac {e^x x}{6}\right )\right )^2} \, dx-\int \frac {x^2}{\left (x^2-\log \left (-e^5+\frac {3}{x}\right )-\log \left (\frac {e^x x}{6}\right )\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.06, size = 33, normalized size = 1.00 \begin {gather*} \frac {x^2}{-x^2+\log \left (-e^5+\frac {3}{x}\right )+\log \left (\frac {e^x x}{6}\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.62, size = 33, normalized size = 1.00 \begin {gather*} -\frac {x^{2}}{x^{2} - \log \left (\frac {1}{6} \, x e^{x}\right ) - \log \left (-\frac {x e^{5} - 3}{x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.34, size = 26, normalized size = 0.79 \begin {gather*} -\frac {x^{2}}{x^{2} - x + \log \relax (6) - \log \left (-x e^{5} + 3\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.37, size = 239, normalized size = 7.24
method | result | size |
risch | \(-\frac {2 x^{2}}{2 i \pi \mathrm {csgn}\left (\frac {i \left (x \,{\mathrm e}^{5}-3\right )}{x}\right )^{2}-i \pi \,\mathrm {csgn}\left (i \left (x \,{\mathrm e}^{5}-3\right )\right ) \mathrm {csgn}\left (\frac {i \left (x \,{\mathrm e}^{5}-3\right )}{x}\right )^{2}+i \pi \,\mathrm {csgn}\left (i \left (x \,{\mathrm e}^{5}-3\right )\right ) \mathrm {csgn}\left (\frac {i \left (x \,{\mathrm e}^{5}-3\right )}{x}\right ) \mathrm {csgn}\left (\frac {i}{x}\right )+i \pi \,\mathrm {csgn}\left (i x \,{\mathrm e}^{x}\right ) \mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i {\mathrm e}^{x}\right )-i \pi \mathrm {csgn}\left (i x \,{\mathrm e}^{x}\right )^{2} \mathrm {csgn}\left (i x \right )-i \pi \mathrm {csgn}\left (\frac {i \left (x \,{\mathrm e}^{5}-3\right )}{x}\right )^{3}-i \pi \mathrm {csgn}\left (i x \,{\mathrm e}^{x}\right )^{2} \mathrm {csgn}\left (i {\mathrm e}^{x}\right )+i \pi \mathrm {csgn}\left (i x \,{\mathrm e}^{x}\right )^{3}-i \pi \mathrm {csgn}\left (\frac {i \left (x \,{\mathrm e}^{5}-3\right )}{x}\right )^{2} \mathrm {csgn}\left (\frac {i}{x}\right )-2 i \pi +2 x^{2}+2 \ln \relax (2)+2 \ln \relax (3)-2 \ln \left (x \,{\mathrm e}^{5}-3\right )-2 \ln \left ({\mathrm e}^{x}\right )}\) | \(239\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.57, size = 28, normalized size = 0.85 \begin {gather*} -\frac {x^{2}}{x^{2} - x + \log \relax (3) + \log \relax (2) - \log \left (-x e^{5} + 3\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.22, size = 30, normalized size = 0.91 \begin {gather*} \frac {x^2}{\ln \left (\frac {x\,{\mathrm {e}}^x}{6}\right )+\ln \left (-\frac {x\,{\mathrm {e}}^5-3}{x}\right )-x^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.51, size = 24, normalized size = 0.73 \begin {gather*} \frac {x^{2}}{- x^{2} + \log {\left (\frac {- x e^{5} + 3}{x} \right )} + \log {\left (\frac {x e^{x}}{6} \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________