Optimal. Leaf size=42 \[ \frac {4}{-x+\frac {-e^x+x}{5 \left (2 x+\left (e^{\frac {e^{2 x}}{x^2}}-x\right ) x\right )}} \]
________________________________________________________________________________________
Rubi [F] time = 180.00, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \text {\$Aborted} \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
Aborted
________________________________________________________________________________________
Mathematica [A] time = 0.18, size = 53, normalized size = 1.26 \begin {gather*} \frac {20 x \left (-2-e^{\frac {e^{2 x}}{x^2}}+x\right )}{e^x+5 e^{\frac {e^{2 x}}{x^2}} x^2+x \left (-1+10 x-5 x^2\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.91, size = 53, normalized size = 1.26 \begin {gather*} -\frac {20 \, {\left (x^{2} - x e^{\left (\frac {e^{\left (2 \, x\right )}}{x^{2}}\right )} - 2 \, x\right )}}{5 \, x^{3} - 5 \, x^{2} e^{\left (\frac {e^{\left (2 \, x\right )}}{x^{2}}\right )} - 10 \, x^{2} + x - e^{x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.73, size = 708, normalized size = 16.86 \begin {gather*} -\frac {20 \, {\left (5 \, x^{8} e^{x} - 10 \, x^{7} e^{\left (3 \, x\right )} - 10 \, x^{7} e^{x} - 5 \, x^{7} e^{\left (\frac {x^{3} + e^{\left (2 \, x\right )}}{x^{2}}\right )} + 50 \, x^{6} e^{\left (3 \, x\right )} - x^{6} e^{\left (2 \, x\right )} + 10 \, x^{6} e^{\left (2 \, x + \frac {x^{3} + e^{\left (2 \, x\right )}}{x^{2}}\right )} - x^{6} e^{x} - 82 \, x^{5} e^{\left (3 \, x\right )} + 4 \, x^{5} e^{\left (2 \, x\right )} - 30 \, x^{5} e^{\left (2 \, x + \frac {x^{3} + e^{\left (2 \, x\right )}}{x^{2}}\right )} + x^{5} e^{\left (x + \frac {x^{3} + e^{\left (2 \, x\right )}}{x^{2}}\right )} + 2 \, x^{5} e^{x} + x^{5} e^{\left (\frac {x^{3} + e^{\left (2 \, x\right )}}{x^{2}}\right )} + 2 \, x^{4} e^{\left (4 \, x\right )} + 46 \, x^{4} e^{\left (3 \, x\right )} - 4 \, x^{4} e^{\left (2 \, x\right )} + 22 \, x^{4} e^{\left (2 \, x + \frac {x^{3} + e^{\left (2 \, x\right )}}{x^{2}}\right )} - 2 \, x^{4} e^{\left (x + \frac {x^{3} + e^{\left (2 \, x\right )}}{x^{2}}\right )} - 6 \, x^{3} e^{\left (4 \, x\right )} - 4 \, x^{3} e^{\left (3 \, x\right )} - 2 \, x^{3} e^{\left (3 \, x + \frac {x^{3} + e^{\left (2 \, x\right )}}{x^{2}}\right )} - 2 \, x^{3} e^{\left (2 \, x + \frac {x^{3} + e^{\left (2 \, x\right )}}{x^{2}}\right )} + 4 \, x^{2} e^{\left (4 \, x\right )} + 2 \, x^{2} e^{\left (3 \, x + \frac {x^{3} + e^{\left (2 \, x\right )}}{x^{2}}\right )}\right )}}{25 \, x^{9} e^{x} - 50 \, x^{8} e^{\left (3 \, x\right )} - 50 \, x^{8} e^{x} - 25 \, x^{8} e^{\left (\frac {x^{3} + e^{\left (2 \, x\right )}}{x^{2}}\right )} + 250 \, x^{7} e^{\left (3 \, x\right )} - 5 \, x^{7} e^{\left (2 \, x\right )} + 50 \, x^{7} e^{\left (2 \, x + \frac {x^{3} + e^{\left (2 \, x\right )}}{x^{2}}\right )} - 420 \, x^{6} e^{\left (3 \, x\right )} + 15 \, x^{6} e^{\left (2 \, x\right )} - 150 \, x^{6} e^{\left (2 \, x + \frac {x^{3} + e^{\left (2 \, x\right )}}{x^{2}}\right )} + 5 \, x^{6} e^{\left (x + \frac {x^{3} + e^{\left (2 \, x\right )}}{x^{2}}\right )} + 10 \, x^{6} e^{x} + 5 \, x^{6} e^{\left (\frac {x^{3} + e^{\left (2 \, x\right )}}{x^{2}}\right )} + 20 \, x^{5} e^{\left (4 \, x\right )} + 260 \, x^{5} e^{\left (3 \, x\right )} - 21 \, x^{5} e^{\left (2 \, x\right )} + 110 \, x^{5} e^{\left (2 \, x + \frac {x^{3} + e^{\left (2 \, x\right )}}{x^{2}}\right )} - 10 \, x^{5} e^{\left (x + \frac {x^{3} + e^{\left (2 \, x\right )}}{x^{2}}\right )} - x^{5} e^{x} - 60 \, x^{4} e^{\left (4 \, x\right )} - 41 \, x^{4} e^{\left (3 \, x\right )} + 3 \, x^{4} e^{\left (2 \, x\right )} - 10 \, x^{4} e^{\left (3 \, x + \frac {x^{3} + e^{\left (2 \, x\right )}}{x^{2}}\right )} - 10 \, x^{4} e^{\left (2 \, x + \frac {x^{3} + e^{\left (2 \, x\right )}}{x^{2}}\right )} + 44 \, x^{3} e^{\left (4 \, x\right )} + 10 \, x^{3} e^{\left (3 \, x + \frac {x^{3} + e^{\left (2 \, x\right )}}{x^{2}}\right )} - 2 \, x^{2} e^{\left (5 \, x\right )} - 4 \, x^{2} e^{\left (4 \, x\right )} + 2 \, x e^{\left (5 \, x\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.07, size = 50, normalized size = 1.19
method | result | size |
risch | \(-\frac {4}{x}+\frac {4 x -4 \,{\mathrm e}^{x}}{x \left (5 x^{3}-5 x^{2} {\mathrm e}^{\frac {{\mathrm e}^{2 x}}{x^{2}}}-10 x^{2}+x -{\mathrm e}^{x}\right )}\) | \(50\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.47, size = 53, normalized size = 1.26 \begin {gather*} -\frac {20 \, {\left (x^{2} - x e^{\left (\frac {e^{\left (2 \, x\right )}}{x^{2}}\right )} - 2 \, x\right )}}{5 \, x^{3} - 5 \, x^{2} e^{\left (\frac {e^{\left (2 \, x\right )}}{x^{2}}\right )} - 10 \, x^{2} + x - e^{x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.62, size = 49, normalized size = 1.17 \begin {gather*} -\frac {20\,x\,\left ({\mathrm {e}}^{\frac {{\mathrm {e}}^{2\,x}}{x^2}}-x+2\right )}{{\mathrm {e}}^x-x+5\,x^2\,{\mathrm {e}}^{\frac {{\mathrm {e}}^{2\,x}}{x^2}}+10\,x^2-5\,x^3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.41, size = 44, normalized size = 1.05 \begin {gather*} \frac {- 4 x + 4 e^{x}}{- 5 x^{4} + 5 x^{3} e^{\frac {e^{2 x}}{x^{2}}} + 10 x^{3} - x^{2} + x e^{x}} - \frac {4}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________