Optimal. Leaf size=22 \[ 3+\frac {\left (10+e^{256}\right ) (4+x) \log \left (\log ^2(x)\right )}{3 x} \]
________________________________________________________________________________________
Rubi [A] time = 0.29, antiderivative size = 30, normalized size of antiderivative = 1.36, number of steps used = 14, number of rules used = 9, integrand size = 40, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.225, Rules used = {12, 6688, 6742, 2353, 2309, 2178, 2302, 29, 2522} \begin {gather*} \frac {4 \left (10+e^{256}\right ) \log \left (\log ^2(x)\right )}{3 x}+\frac {2}{3} \left (10+e^{256}\right ) \log (\log (x)) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 29
Rule 2178
Rule 2302
Rule 2309
Rule 2353
Rule 2522
Rule 6688
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{3} \int \frac {80+20 x+e^{256} (8+2 x)+\left (-40-4 e^{256}\right ) \log (x) \log \left (\log ^2(x)\right )}{x^2 \log (x)} \, dx\\ &=\frac {1}{3} \int \frac {2 \left (10+e^{256}\right ) \left (4+x-2 \log (x) \log \left (\log ^2(x)\right )\right )}{x^2 \log (x)} \, dx\\ &=\frac {1}{3} \left (2 \left (10+e^{256}\right )\right ) \int \frac {4+x-2 \log (x) \log \left (\log ^2(x)\right )}{x^2 \log (x)} \, dx\\ &=\frac {1}{3} \left (2 \left (10+e^{256}\right )\right ) \int \left (\frac {4+x}{x^2 \log (x)}-\frac {2 \log \left (\log ^2(x)\right )}{x^2}\right ) \, dx\\ &=\frac {1}{3} \left (2 \left (10+e^{256}\right )\right ) \int \frac {4+x}{x^2 \log (x)} \, dx-\frac {1}{3} \left (4 \left (10+e^{256}\right )\right ) \int \frac {\log \left (\log ^2(x)\right )}{x^2} \, dx\\ &=\frac {4 \left (10+e^{256}\right ) \log \left (\log ^2(x)\right )}{3 x}+\frac {1}{3} \left (2 \left (10+e^{256}\right )\right ) \int \left (\frac {4}{x^2 \log (x)}+\frac {1}{x \log (x)}\right ) \, dx-\frac {1}{3} \left (8 \left (10+e^{256}\right )\right ) \int \frac {1}{x^2 \log (x)} \, dx\\ &=\frac {4 \left (10+e^{256}\right ) \log \left (\log ^2(x)\right )}{3 x}+\frac {1}{3} \left (2 \left (10+e^{256}\right )\right ) \int \frac {1}{x \log (x)} \, dx+\frac {1}{3} \left (8 \left (10+e^{256}\right )\right ) \int \frac {1}{x^2 \log (x)} \, dx-\frac {1}{3} \left (8 \left (10+e^{256}\right )\right ) \operatorname {Subst}\left (\int \frac {e^{-x}}{x} \, dx,x,\log (x)\right )\\ &=-\frac {8}{3} \left (10+e^{256}\right ) \text {Ei}(-\log (x))+\frac {4 \left (10+e^{256}\right ) \log \left (\log ^2(x)\right )}{3 x}+\frac {1}{3} \left (2 \left (10+e^{256}\right )\right ) \operatorname {Subst}\left (\int \frac {1}{x} \, dx,x,\log (x)\right )+\frac {1}{3} \left (8 \left (10+e^{256}\right )\right ) \operatorname {Subst}\left (\int \frac {e^{-x}}{x} \, dx,x,\log (x)\right )\\ &=\frac {2}{3} \left (10+e^{256}\right ) \log (\log (x))+\frac {4 \left (10+e^{256}\right ) \log \left (\log ^2(x)\right )}{3 x}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.05, size = 23, normalized size = 1.05 \begin {gather*} \frac {2}{3} \left (10+e^{256}\right ) \left (\log (\log (x))+\frac {2 \log \left (\log ^2(x)\right )}{x}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.79, size = 21, normalized size = 0.95 \begin {gather*} \frac {{\left ({\left (x + 4\right )} e^{256} + 10 \, x + 40\right )} \log \left (\log \relax (x)^{2}\right )}{3 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.23, size = 35, normalized size = 1.59 \begin {gather*} \frac {2 \, {\left (x e^{256} \log \left (\log \relax (x)\right ) + 2 \, e^{256} \log \left (\log \relax (x)^{2}\right ) + 10 \, x \log \left (\log \relax (x)\right ) + 20 \, \log \left (\log \relax (x)^{2}\right )\right )}}{3 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.18, size = 31, normalized size = 1.41
method | result | size |
norman | \(\frac {\left (\frac {4 \,{\mathrm e}^{256}}{3}+\frac {40}{3}\right ) \ln \left (\ln \relax (x )^{2}\right )+\left (\frac {10}{3}+\frac {{\mathrm e}^{256}}{3}\right ) x \ln \left (\ln \relax (x )^{2}\right )}{x}\) | \(31\) |
risch | \(\frac {8 \left (10+{\mathrm e}^{256}\right ) \ln \left (\ln \relax (x )\right )}{3 x}+\frac {-\frac {2 i \pi \,{\mathrm e}^{256} \mathrm {csgn}\left (i \ln \relax (x )\right )^{2} \mathrm {csgn}\left (i \ln \relax (x )^{2}\right )}{3}+\frac {4 i \pi \,{\mathrm e}^{256} \mathrm {csgn}\left (i \ln \relax (x )\right ) \mathrm {csgn}\left (i \ln \relax (x )^{2}\right )^{2}}{3}-\frac {2 i \pi \,{\mathrm e}^{256} \mathrm {csgn}\left (i \ln \relax (x )^{2}\right )^{3}}{3}-\frac {20 i \pi \mathrm {csgn}\left (i \ln \relax (x )\right )^{2} \mathrm {csgn}\left (i \ln \relax (x )^{2}\right )}{3}+\frac {40 i \pi \,\mathrm {csgn}\left (i \ln \relax (x )\right ) \mathrm {csgn}\left (i \ln \relax (x )^{2}\right )^{2}}{3}-\frac {20 i \pi \mathrm {csgn}\left (i \ln \relax (x )^{2}\right )^{3}}{3}+\frac {2 \ln \left (\ln \relax (x )\right ) {\mathrm e}^{256} x}{3}+\frac {20 x \ln \left (\ln \relax (x )\right )}{3}}{x}\) | \(147\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [C] time = 0.41, size = 53, normalized size = 2.41 \begin {gather*} \frac {4}{3} \, {\left (\frac {\log \left (\log \relax (x)^{2}\right )}{x} - 2 \, {\rm Ei}\left (-\log \relax (x)\right )\right )} e^{256} + \frac {8}{3} \, {\rm Ei}\left (-\log \relax (x)\right ) e^{256} + \frac {2}{3} \, e^{256} \log \left (\log \relax (x)\right ) + \frac {40 \, \log \left (\log \relax (x)^{2}\right )}{3 \, x} + \frac {20}{3} \, \log \left (\log \relax (x)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.67, size = 17, normalized size = 0.77 \begin {gather*} \frac {\ln \left ({\ln \relax (x)}^2\right )\,\left ({\mathrm {e}}^{256}+10\right )\,\left (x+4\right )}{3\,x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 10.82, size = 29, normalized size = 1.32 \begin {gather*} \frac {2 \left (10 + e^{256}\right ) \log {\left (\log {\relax (x )} \right )}}{3} + \frac {\left (40 + 4 e^{256}\right ) \log {\left (\log {\relax (x )}^{2} \right )}}{3 x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________