Optimal. Leaf size=12 \[ x+\frac {e^{-8 x}}{\log (5)} \]
________________________________________________________________________________________
Rubi [A] time = 0.02, antiderivative size = 12, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 3, integrand size = 24, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.125, Rules used = {12, 2248, 43} \begin {gather*} x+\frac {e^{-8 x}}{\log (5)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 43
Rule 2248
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {4 \int e^{-8 x} \left (-2+\frac {1}{4} e^{8 x} \log (5)\right ) \, dx}{\log (5)}\\ &=\frac {\operatorname {Subst}\left (\int \frac {-2+\frac {1}{4} x \log (5)}{x^2} \, dx,x,e^{8 x}\right )}{2 \log (5)}\\ &=\frac {\operatorname {Subst}\left (\int \left (-\frac {2}{x^2}+\frac {\log (5)}{4 x}\right ) \, dx,x,e^{8 x}\right )}{2 \log (5)}\\ &=x+\frac {e^{-8 x}}{\log (5)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 12, normalized size = 1.00 \begin {gather*} x+\frac {e^{-8 x}}{\log (5)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.62, size = 21, normalized size = 1.75 \begin {gather*} \frac {4 \, x \log \relax (5) + e^{\left (-8 \, x + 2 \, \log \relax (2)\right )}}{4 \, \log \relax (5)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.22, size = 26, normalized size = 2.17 \begin {gather*} -\frac {{\left (e^{\left (8 \, x\right )} \log \relax (5) - 8\right )} e^{\left (-8 \, x\right )} - 8 \, x \log \relax (5)}{8 \, \log \relax (5)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 12, normalized size = 1.00
method | result | size |
risch | \(x +\frac {{\mathrm e}^{-8 x}}{\ln \relax (5)}\) | \(12\) |
derivativedivides | \(\frac {4 \,{\mathrm e}^{-8 x}+\ln \relax (5) \ln \left ({\mathrm e}^{-\ln \relax (2)+4 x}\right )}{4 \ln \relax (5)}\) | \(32\) |
norman | \(4 \left (\frac {x \,{\mathrm e}^{8 x}}{4}+\frac {1}{4 \ln \relax (5)}\right ) {\mathrm e}^{-8 x}\) | \(33\) |
default | \(\frac {{\mathrm e}^{-8 x}+\frac {\ln \relax (5) \ln \left ({\mathrm e}^{-\ln \relax (2)+4 x}\right )}{4}}{\ln \relax (5)}\) | \(34\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.37, size = 14, normalized size = 1.17 \begin {gather*} \frac {x \log \relax (5) + e^{\left (-8 \, x\right )}}{\log \relax (5)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.10, size = 11, normalized size = 0.92 \begin {gather*} x+\frac {{\mathrm {e}}^{-8\,x}}{\ln \relax (5)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.11, size = 10, normalized size = 0.83 \begin {gather*} x + \frac {e^{- 8 x}}{\log {\relax (5 )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________