Optimal. Leaf size=35 \[ x^2 \log ^2\left (\frac {-\frac {4+e}{9+e^3}+\frac {1}{2} \left (e^{3 x}+x\right )}{x}\right ) \]
________________________________________________________________________________________
Rubi [F] time = 10.04, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\left (16 x+4 e x+e^{3 x} \left (-18 x+54 x^2+e^3 \left (-2 x+6 x^2\right )\right )\right ) \log \left (\frac {-8-2 e+e^{3 x} \left (9+e^3\right )+9 x+e^3 x}{18 x+2 e^3 x}\right )+\left (-16 x-4 e x+18 x^2+2 e^3 x^2+e^{3 x} \left (18 x+2 e^3 x\right )\right ) \log ^2\left (\frac {-8-2 e+e^{3 x} \left (9+e^3\right )+9 x+e^3 x}{18 x+2 e^3 x}\right )}{-8-2 e+e^{3 x} \left (9+e^3\right )+9 x+e^3 x} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {\left (16 x+4 e x+e^{3 x} \left (-18 x+54 x^2+e^3 \left (-2 x+6 x^2\right )\right )\right ) \log \left (\frac {-8-2 e+e^{3 x} \left (9+e^3\right )+9 x+e^3 x}{18 x+2 e^3 x}\right )+\left (-16 x-4 e x+18 x^2+2 e^3 x^2+e^{3 x} \left (18 x+2 e^3 x\right )\right ) \log ^2\left (\frac {-8-2 e+e^{3 x} \left (9+e^3\right )+9 x+e^3 x}{18 x+2 e^3 x}\right )}{-8-2 e+e^{3 x} \left (9+e^3\right )+\left (9+e^3\right ) x} \, dx\\ &=\int \frac {-\left (\left (16 x+4 e x+e^{3 x} \left (-18 x+54 x^2+e^3 \left (-2 x+6 x^2\right )\right )\right ) \log \left (\frac {-8-2 e+e^{3 x} \left (9+e^3\right )+9 x+e^3 x}{18 x+2 e^3 x}\right )\right )-\left (-16 x-4 e x+18 x^2+2 e^3 x^2+e^{3 x} \left (18 x+2 e^3 x\right )\right ) \log ^2\left (\frac {-8-2 e+e^{3 x} \left (9+e^3\right )+9 x+e^3 x}{18 x+2 e^3 x}\right )}{8 \left (1+\frac {e}{4}\right )-e^{3 x} \left (9+e^3\right )-\left (9+e^3\right ) x} \, dx\\ &=\int \left (\frac {2 x^2 \left (-33-6 e-e^3+3 \left (9+e^3\right ) x\right ) \log \left (\frac {-8 \left (1+\frac {e}{4}\right )+e^{3 x} \left (9+e^3\right )+9 \left (1+\frac {e^3}{9}\right ) x}{2 \left (9+e^3\right ) x}\right )}{8 \left (1+\frac {e}{4}\right )-9 e^{3 x} \left (1+\frac {e^3}{9}\right )-9 \left (1+\frac {e^3}{9}\right ) x}+2 x \left (-1+3 x+\log \left (\frac {-8-2 e+e^{3 x} \left (9+e^3\right )+9 x+e^3 x}{18 x+2 e^3 x}\right )\right ) \log \left (\frac {-8 \left (1+\frac {e}{4}\right )+e^{3 x} \left (9+e^3\right )+9 \left (1+\frac {e^3}{9}\right ) x}{2 \left (9+e^3\right ) x}\right )\right ) \, dx\\ &=2 \int \frac {x^2 \left (-33-6 e-e^3+3 \left (9+e^3\right ) x\right ) \log \left (\frac {-8 \left (1+\frac {e}{4}\right )+e^{3 x} \left (9+e^3\right )+9 \left (1+\frac {e^3}{9}\right ) x}{2 \left (9+e^3\right ) x}\right )}{8 \left (1+\frac {e}{4}\right )-9 e^{3 x} \left (1+\frac {e^3}{9}\right )-9 \left (1+\frac {e^3}{9}\right ) x} \, dx+2 \int x \left (-1+3 x+\log \left (\frac {-8-2 e+e^{3 x} \left (9+e^3\right )+9 x+e^3 x}{18 x+2 e^3 x}\right )\right ) \log \left (\frac {-8 \left (1+\frac {e}{4}\right )+e^{3 x} \left (9+e^3\right )+9 \left (1+\frac {e^3}{9}\right ) x}{2 \left (9+e^3\right ) x}\right ) \, dx\\ &=2 \int \left (x \left (\log \left (2 \left (9+e^3\right )\right )-\log \left (\frac {-8-2 e+9 e^{3 x}+e^{3+3 x}+9 x+e^3 x}{x}\right )\right )+x \left (\log \left (2 \left (9+e^3\right )\right )-\log \left (\frac {-8-2 e+9 e^{3 x}+e^{3+3 x}+9 x+e^3 x}{x}\right )\right )^2+3 x^2 \log \left (\frac {-8 \left (1+\frac {e}{4}\right )+9 e^{3 x} \left (1+\frac {e^3}{9}\right )+9 \left (1+\frac {e^3}{9}\right ) x}{2 \left (9+e^3\right ) x}\right )\right ) \, dx-2 \int \frac {\left (8 \left (1+\frac {e}{4}\right )+9 e^{3 x} \left (1+\frac {e^3}{9}\right ) (-1+3 x)\right ) \left (\left (33+6 e+e^3\right ) \int -\frac {x^2}{-8-2 e+9 e^{3 x}+e^{3+3 x}+9 x+e^3 x} \, dx-3 \left (9+e^3\right ) \int -\frac {x^3}{-8-2 e+9 e^{3 x}+e^{3+3 x}+9 x+e^3 x} \, dx\right )}{x \left (8 \left (1+\frac {e}{4}\right )-9 e^{3 x} \left (1+\frac {e^3}{9}\right )-9 \left (1+\frac {e^3}{9}\right ) x\right )} \, dx+\left (6 \left (9+e^3\right ) \log \left (\frac {-8 \left (1+\frac {e}{4}\right )+e^{3 x} \left (9+e^3\right )+9 \left (1+\frac {e^3}{9}\right ) x}{2 \left (9+e^3\right ) x}\right )\right ) \int \frac {x^3}{8 \left (1+\frac {e}{4}\right )-9 e^{3 x} \left (1+\frac {e^3}{9}\right )-9 \left (1+\frac {e^3}{9}\right ) x} \, dx-\left (2 \left (33+6 e+e^3\right ) \log \left (\frac {-8 \left (1+\frac {e}{4}\right )+e^{3 x} \left (9+e^3\right )+9 \left (1+\frac {e^3}{9}\right ) x}{2 \left (9+e^3\right ) x}\right )\right ) \int \frac {x^2}{8 \left (1+\frac {e}{4}\right )-9 e^{3 x} \left (1+\frac {e^3}{9}\right )-9 \left (1+\frac {e^3}{9}\right ) x} \, dx\\ &=2 \int x \left (\log \left (2 \left (9+e^3\right )\right )-\log \left (\frac {-8-2 e+9 e^{3 x}+e^{3+3 x}+9 x+e^3 x}{x}\right )\right ) \, dx+2 \int x \left (\log \left (2 \left (9+e^3\right )\right )-\log \left (\frac {-8-2 e+9 e^{3 x}+e^{3+3 x}+9 x+e^3 x}{x}\right )\right )^2 \, dx-2 \int \left (\frac {(1-3 x) \left (-33 \left (1+\frac {1}{33} e \left (6+e^2\right )\right ) \int \frac {x^2}{-8-2 e+9 e^{3 x}+e^{3+3 x}+\left (9+e^3\right ) x} \, dx+27 \left (1+\frac {e^3}{9}\right ) \int \frac {x^3}{-8-2 e+9 e^{3 x}+e^{3+3 x}+\left (9+e^3\right ) x} \, dx\right )}{x}+\frac {\left (33+6 e+e^3-3 \left (9+e^3\right ) x\right ) \left (-33 \left (1+\frac {1}{33} e \left (6+e^2\right )\right ) \int \frac {x^2}{-8-2 e+9 e^{3 x}+e^{3+3 x}+\left (9+e^3\right ) x} \, dx+27 \left (1+\frac {e^3}{9}\right ) \int \frac {x^3}{-8-2 e+9 e^{3 x}+e^{3+3 x}+\left (9+e^3\right ) x} \, dx\right )}{8 \left (1+\frac {e}{4}\right )-9 e^{3 x} \left (1+\frac {e^3}{9}\right )-9 \left (1+\frac {e^3}{9}\right ) x}\right ) \, dx+6 \int x^2 \log \left (\frac {-8 \left (1+\frac {e}{4}\right )+9 e^{3 x} \left (1+\frac {e^3}{9}\right )+9 \left (1+\frac {e^3}{9}\right ) x}{2 \left (9+e^3\right ) x}\right ) \, dx+\left (6 \left (9+e^3\right ) \log \left (\frac {-8 \left (1+\frac {e}{4}\right )+e^{3 x} \left (9+e^3\right )+9 \left (1+\frac {e^3}{9}\right ) x}{2 \left (9+e^3\right ) x}\right )\right ) \int \frac {x^3}{8 \left (1+\frac {e}{4}\right )-9 e^{3 x} \left (1+\frac {e^3}{9}\right )-9 \left (1+\frac {e^3}{9}\right ) x} \, dx-\left (2 \left (33+6 e+e^3\right ) \log \left (\frac {-8 \left (1+\frac {e}{4}\right )+e^{3 x} \left (9+e^3\right )+9 \left (1+\frac {e^3}{9}\right ) x}{2 \left (9+e^3\right ) x}\right )\right ) \int \frac {x^2}{8 \left (1+\frac {e}{4}\right )-9 e^{3 x} \left (1+\frac {e^3}{9}\right )-9 \left (1+\frac {e^3}{9}\right ) x} \, dx\\ &=\text {Rest of rules removed due to large latex content} \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [F] time = 0.51, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\left (16 x+4 e x+e^{3 x} \left (-18 x+54 x^2+e^3 \left (-2 x+6 x^2\right )\right )\right ) \log \left (\frac {-8-2 e+e^{3 x} \left (9+e^3\right )+9 x+e^3 x}{18 x+2 e^3 x}\right )+\left (-16 x-4 e x+18 x^2+2 e^3 x^2+e^{3 x} \left (18 x+2 e^3 x\right )\right ) \log ^2\left (\frac {-8-2 e+e^{3 x} \left (9+e^3\right )+9 x+e^3 x}{18 x+2 e^3 x}\right )}{-8-2 e+e^{3 x} \left (9+e^3\right )+9 x+e^3 x} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.70, size = 41, normalized size = 1.17 \begin {gather*} x^{2} \log \left (\frac {x e^{3} + {\left (e^{3} + 9\right )} e^{\left (3 \, x\right )} + 9 \, x - 2 \, e - 8}{2 \, {\left (x e^{3} + 9 \, x\right )}}\right )^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 9.38, size = 90, normalized size = 2.57 \begin {gather*} x^{2} \log \left (2 \, x e^{3} + 18 \, x\right )^{2} - 2 \, x^{2} \log \left (2 \, x e^{3} + 18 \, x\right ) \log \left (x e^{3} + 9 \, x - 2 \, e + 9 \, e^{\left (3 \, x\right )} + e^{\left (3 \, x + 3\right )} - 8\right ) + x^{2} \log \left (x e^{3} + 9 \, x - 2 \, e + 9 \, e^{\left (3 \, x\right )} + e^{\left (3 \, x + 3\right )} - 8\right )^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.65, size = 42, normalized size = 1.20
method | result | size |
norman | \(x^{2} \ln \left (\frac {\left ({\mathrm e}^{3}+9\right ) {\mathrm e}^{3 x}+x \,{\mathrm e}^{3}-2 \,{\mathrm e}+9 x -8}{2 x \,{\mathrm e}^{3}+18 x}\right )^{2}\) | \(42\) |
risch | \(\text {Expression too large to display}\) | \(2142\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.52, size = 120, normalized size = 3.43 \begin {gather*} x^{2} \log \left (x {\left (e^{3} + 9\right )} + {\left (e^{3} + 9\right )} e^{\left (3 \, x\right )} - 2 \, e - 8\right )^{2} + 2 \, x^{2} {\left (\log \relax (2) + \log \left (e^{3} + 9\right )\right )} \log \relax (x) + x^{2} \log \relax (x)^{2} + {\left (\log \relax (2)^{2} + 2 \, \log \relax (2) \log \left (e^{3} + 9\right ) + \log \left (e^{3} + 9\right )^{2}\right )} x^{2} - 2 \, {\left (x^{2} {\left (\log \relax (2) + \log \left (e^{3} + 9\right )\right )} + x^{2} \log \relax (x)\right )} \log \left (x {\left (e^{3} + 9\right )} + {\left (e^{3} + 9\right )} e^{\left (3 \, x\right )} - 2 \, e - 8\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 6.27, size = 41, normalized size = 1.17 \begin {gather*} x^2\,{\ln \left (\frac {9\,x-2\,\mathrm {e}+x\,{\mathrm {e}}^3+{\mathrm {e}}^{3\,x}\,\left ({\mathrm {e}}^3+9\right )-8}{18\,x+2\,x\,{\mathrm {e}}^3}\right )}^2 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.75, size = 41, normalized size = 1.17 \begin {gather*} x^{2} \log {\left (\frac {9 x + x e^{3} + \left (9 + e^{3}\right ) e^{3 x} - 8 - 2 e}{18 x + 2 x e^{3}} \right )}^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________