Optimal. Leaf size=19 \[ e^{25 \left (25+\frac {1}{x}+x\right )^2}+\frac {4}{\log (x)} \]
________________________________________________________________________________________
Rubi [A] time = 2.25, antiderivative size = 24, normalized size of antiderivative = 1.26, number of steps used = 6, number of rules used = 5, integrand size = 60, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.083, Rules used = {6688, 14, 6706, 2302, 30} \begin {gather*} e^{\frac {25 \left (x^2+25 x+1\right )^2}{x^2}}+\frac {4}{\log (x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 14
Rule 30
Rule 2302
Rule 6688
Rule 6706
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {50 e^{\frac {25 \left (1+25 x+x^2\right )^2}{x^2}} \left (-1-25 x+25 x^3+x^4\right )-\frac {4 x^2}{\log ^2(x)}}{x^3} \, dx\\ &=\int \left (\frac {50 e^{\frac {25 \left (1+25 x+x^2\right )^2}{x^2}} (-1+x) (1+x) \left (1+25 x+x^2\right )}{x^3}-\frac {4}{x \log ^2(x)}\right ) \, dx\\ &=-\left (4 \int \frac {1}{x \log ^2(x)} \, dx\right )+50 \int \frac {e^{\frac {25 \left (1+25 x+x^2\right )^2}{x^2}} (-1+x) (1+x) \left (1+25 x+x^2\right )}{x^3} \, dx\\ &=e^{\frac {25 \left (1+25 x+x^2\right )^2}{x^2}}-4 \operatorname {Subst}\left (\int \frac {1}{x^2} \, dx,x,\log (x)\right )\\ &=e^{\frac {25 \left (1+25 x+x^2\right )^2}{x^2}}+\frac {4}{\log (x)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.52, size = 24, normalized size = 1.26 \begin {gather*} e^{\frac {25 \left (1+25 x+x^2\right )^2}{x^2}}+\frac {4}{\log (x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.83, size = 34, normalized size = 1.79 \begin {gather*} \frac {e^{\left (\frac {25 \, {\left (x^{4} + 50 \, x^{3} + 627 \, x^{2} + 50 \, x + 1\right )}}{x^{2}}\right )} \log \relax (x) + 4}{\log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.27, size = 34, normalized size = 1.79 \begin {gather*} \frac {e^{\left (\frac {25 \, {\left (x^{4} + 50 \, x^{3} + 627 \, x^{2} + 50 \, x + 1\right )}}{x^{2}}\right )} \log \relax (x) + 4}{\log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.11, size = 24, normalized size = 1.26
method | result | size |
risch | \(\frac {4}{\ln \relax (x )}+{\mathrm e}^{\frac {25 \left (x^{2}+25 x +1\right )^{2}}{x^{2}}}\) | \(24\) |
default | \(\frac {4}{\ln \relax (x )}+{\mathrm e}^{\frac {25 x^{4}+1250 x^{3}+15675 x^{2}+1250 x +25}{x^{2}}}\) | \(33\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.50, size = 31, normalized size = 1.63 \begin {gather*} \frac {e^{\left (25 \, x^{2} + 1250 \, x + \frac {1250}{x} + \frac {25}{x^{2}} + 15675\right )} \log \relax (x) + 4}{\log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.87, size = 32, normalized size = 1.68 \begin {gather*} \frac {4}{\ln \relax (x)}+{\mathrm {e}}^{1250\,x}\,{\mathrm {e}}^{15675}\,{\mathrm {e}}^{\frac {25}{x^2}}\,{\mathrm {e}}^{25\,x^2}\,{\mathrm {e}}^{1250/x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.38, size = 29, normalized size = 1.53 \begin {gather*} e^{\frac {25 x^{4} + 1250 x^{3} + 15675 x^{2} + 1250 x + 25}{x^{2}}} + \frac {4}{\log {\relax (x )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________