3.75.10 \(\int \frac {e^{\frac {4 e^{2 \log ^2(x^2)} (1-x)}{x^2}+2 \log ^2(x^2)} (-8+4 x+(32-32 x) \log (x^2))}{x^3} \, dx\)

Optimal. Leaf size=22 \[ e^{\frac {4 e^{2 \log ^2\left (x^2\right )} (1-x)}{x^2}} \]

________________________________________________________________________________________

Rubi [F]  time = 3.67, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\exp \left (\frac {4 e^{2 \log ^2\left (x^2\right )} (1-x)}{x^2}+2 \log ^2\left (x^2\right )\right ) \left (-8+4 x+(32-32 x) \log \left (x^2\right )\right )}{x^3} \, dx \end {gather*}

Verification is not applicable to the result.

[In]

Int[(E^((4*E^(2*Log[x^2]^2)*(1 - x))/x^2 + 2*Log[x^2]^2)*(-8 + 4*x + (32 - 32*x)*Log[x^2]))/x^3,x]

[Out]

-8*Defer[Int][E^((4*E^(2*Log[x^2]^2)*(1 - x))/x^2 + 2*Log[x^2]^2)/x^3, x] + 4*Defer[Int][E^((4*E^(2*Log[x^2]^2
)*(1 - x))/x^2 + 2*Log[x^2]^2)/x^2, x] + 32*Defer[Int][(E^((4*E^(2*Log[x^2]^2)*(1 - x))/x^2 + 2*Log[x^2]^2)*Lo
g[x^2])/x^3, x] - 32*Defer[Int][(E^((4*E^(2*Log[x^2]^2)*(1 - x))/x^2 + 2*Log[x^2]^2)*Log[x^2])/x^2, x]

Rubi steps

\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {4 \exp \left (\frac {4 e^{2 \log ^2\left (x^2\right )} (1-x)}{x^2}+2 \log ^2\left (x^2\right )\right ) (-2+x)}{x^3}-\frac {32 \exp \left (\frac {4 e^{2 \log ^2\left (x^2\right )} (1-x)}{x^2}+2 \log ^2\left (x^2\right )\right ) (-1+x) \log \left (x^2\right )}{x^3}\right ) \, dx\\ &=4 \int \frac {\exp \left (\frac {4 e^{2 \log ^2\left (x^2\right )} (1-x)}{x^2}+2 \log ^2\left (x^2\right )\right ) (-2+x)}{x^3} \, dx-32 \int \frac {\exp \left (\frac {4 e^{2 \log ^2\left (x^2\right )} (1-x)}{x^2}+2 \log ^2\left (x^2\right )\right ) (-1+x) \log \left (x^2\right )}{x^3} \, dx\\ &=4 \int \left (-\frac {2 \exp \left (\frac {4 e^{2 \log ^2\left (x^2\right )} (1-x)}{x^2}+2 \log ^2\left (x^2\right )\right )}{x^3}+\frac {\exp \left (\frac {4 e^{2 \log ^2\left (x^2\right )} (1-x)}{x^2}+2 \log ^2\left (x^2\right )\right )}{x^2}\right ) \, dx-32 \int \left (-\frac {\exp \left (\frac {4 e^{2 \log ^2\left (x^2\right )} (1-x)}{x^2}+2 \log ^2\left (x^2\right )\right ) \log \left (x^2\right )}{x^3}+\frac {\exp \left (\frac {4 e^{2 \log ^2\left (x^2\right )} (1-x)}{x^2}+2 \log ^2\left (x^2\right )\right ) \log \left (x^2\right )}{x^2}\right ) \, dx\\ &=4 \int \frac {\exp \left (\frac {4 e^{2 \log ^2\left (x^2\right )} (1-x)}{x^2}+2 \log ^2\left (x^2\right )\right )}{x^2} \, dx-8 \int \frac {\exp \left (\frac {4 e^{2 \log ^2\left (x^2\right )} (1-x)}{x^2}+2 \log ^2\left (x^2\right )\right )}{x^3} \, dx+32 \int \frac {\exp \left (\frac {4 e^{2 \log ^2\left (x^2\right )} (1-x)}{x^2}+2 \log ^2\left (x^2\right )\right ) \log \left (x^2\right )}{x^3} \, dx-32 \int \frac {\exp \left (\frac {4 e^{2 \log ^2\left (x^2\right )} (1-x)}{x^2}+2 \log ^2\left (x^2\right )\right ) \log \left (x^2\right )}{x^2} \, dx\\ \end {aligned} \end {gather*}

________________________________________________________________________________________

Mathematica [A]  time = 0.64, size = 20, normalized size = 0.91 \begin {gather*} e^{-\frac {4 e^{2 \log ^2\left (x^2\right )} (-1+x)}{x^2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(E^((4*E^(2*Log[x^2]^2)*(1 - x))/x^2 + 2*Log[x^2]^2)*(-8 + 4*x + (32 - 32*x)*Log[x^2]))/x^3,x]

[Out]

E^((-4*E^(2*Log[x^2]^2)*(-1 + x))/x^2)

________________________________________________________________________________________

fricas [B]  time = 0.72, size = 40, normalized size = 1.82 \begin {gather*} e^{\left (-2 \, \log \left (x^{2}\right )^{2} + \frac {2 \, {\left (x^{2} \log \left (x^{2}\right )^{2} - 2 \, {\left (x - 1\right )} e^{\left (2 \, \log \left (x^{2}\right )^{2}\right )}\right )}}{x^{2}}\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((-32*x+32)*log(x^2)+4*x-8)*exp(log(x^2)^2)^2*exp((-x+1)*exp(log(x^2)^2)^2/x^2)^4/x^3,x, algorithm="
fricas")

[Out]

e^(-2*log(x^2)^2 + 2*(x^2*log(x^2)^2 - 2*(x - 1)*e^(2*log(x^2)^2))/x^2)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int -\frac {4 \, {\left (8 \, {\left (x - 1\right )} \log \left (x^{2}\right ) - x + 2\right )} e^{\left (2 \, \log \left (x^{2}\right )^{2} - \frac {4 \, {\left (x - 1\right )} e^{\left (2 \, \log \left (x^{2}\right )^{2}\right )}}{x^{2}}\right )}}{x^{3}}\,{d x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((-32*x+32)*log(x^2)+4*x-8)*exp(log(x^2)^2)^2*exp((-x+1)*exp(log(x^2)^2)^2/x^2)^4/x^3,x, algorithm="
giac")

[Out]

integrate(-4*(8*(x - 1)*log(x^2) - x + 2)*e^(2*log(x^2)^2 - 4*(x - 1)*e^(2*log(x^2)^2)/x^2)/x^3, x)

________________________________________________________________________________________

maple [A]  time = 0.08, size = 19, normalized size = 0.86




method result size



risch \({\mathrm e}^{-\frac {4 \left (x -1\right ) {\mathrm e}^{2 \ln \left (x^{2}\right )^{2}}}{x^{2}}}\) \(19\)



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((-32*x+32)*ln(x^2)+4*x-8)*exp(ln(x^2)^2)^2*exp((1-x)*exp(ln(x^2)^2)^2/x^2)^4/x^3,x,method=_RETURNVERBOSE)

[Out]

exp(-4*(x-1)*exp(2*ln(x^2)^2)/x^2)

________________________________________________________________________________________

maxima [A]  time = 0.51, size = 26, normalized size = 1.18 \begin {gather*} e^{\left (-\frac {4 \, e^{\left (8 \, \log \relax (x)^{2}\right )}}{x} + \frac {4 \, e^{\left (8 \, \log \relax (x)^{2}\right )}}{x^{2}}\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((-32*x+32)*log(x^2)+4*x-8)*exp(log(x^2)^2)^2*exp((-x+1)*exp(log(x^2)^2)^2/x^2)^4/x^3,x, algorithm="
maxima")

[Out]

e^(-4*e^(8*log(x)^2)/x + 4*e^(8*log(x)^2)/x^2)

________________________________________________________________________________________

mupad [B]  time = 5.63, size = 31, normalized size = 1.41 \begin {gather*} {\mathrm {e}}^{-\frac {4\,{\mathrm {e}}^{2\,{\ln \left (x^2\right )}^2}}{x}}\,{\mathrm {e}}^{\frac {4\,{\mathrm {e}}^{2\,{\ln \left (x^2\right )}^2}}{x^2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-(exp(2*log(x^2)^2)*exp(-(4*exp(2*log(x^2)^2)*(x - 1))/x^2)*(log(x^2)*(32*x - 32) - 4*x + 8))/x^3,x)

[Out]

exp(-(4*exp(2*log(x^2)^2))/x)*exp((4*exp(2*log(x^2)^2))/x^2)

________________________________________________________________________________________

sympy [A]  time = 0.67, size = 19, normalized size = 0.86 \begin {gather*} e^{\frac {4 \left (1 - x\right ) e^{2 \log {\left (x^{2} \right )}^{2}}}{x^{2}}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((-32*x+32)*ln(x**2)+4*x-8)*exp(ln(x**2)**2)**2*exp((-x+1)*exp(ln(x**2)**2)**2/x**2)**4/x**3,x)

[Out]

exp(4*(1 - x)*exp(2*log(x**2)**2)/x**2)

________________________________________________________________________________________