Optimal. Leaf size=13 \[ -\frac {\log \left (-1+\frac {4 x}{3}\right )}{x} \]
________________________________________________________________________________________
Rubi [A] time = 0.13, antiderivative size = 13, normalized size of antiderivative = 1.00, number of steps used = 11, number of rules used = 7, integrand size = 34, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.206, Rules used = {1593, 6688, 14, 36, 29, 31, 2395} \begin {gather*} -\frac {\log \left (\frac {4 x}{3}-1\right )}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 14
Rule 29
Rule 31
Rule 36
Rule 1593
Rule 2395
Rule 6688
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-4 x+(-3+4 x) \log \left (\frac {1}{3} (-3+4 x)\right )}{x^2 (-3+4 x)} \, dx\\ &=\int \frac {\frac {4 x}{3-4 x}+\log \left (-1+\frac {4 x}{3}\right )}{x^2} \, dx\\ &=\int \left (-\frac {4}{x (-3+4 x)}+\frac {\log \left (-1+\frac {4 x}{3}\right )}{x^2}\right ) \, dx\\ &=-\left (4 \int \frac {1}{x (-3+4 x)} \, dx\right )+\int \frac {\log \left (-1+\frac {4 x}{3}\right )}{x^2} \, dx\\ &=-\frac {\log \left (-1+\frac {4 x}{3}\right )}{x}+\frac {4}{3} \int \frac {1}{x} \, dx+\frac {4}{3} \int \frac {1}{x \left (-1+\frac {4 x}{3}\right )} \, dx-\frac {16}{3} \int \frac {1}{-3+4 x} \, dx\\ &=-\frac {4}{3} \log (3-4 x)+\frac {4 \log (x)}{3}-\frac {\log \left (-1+\frac {4 x}{3}\right )}{x}-\frac {4}{3} \int \frac {1}{x} \, dx+\frac {16}{9} \int \frac {1}{-1+\frac {4 x}{3}} \, dx\\ &=-\frac {\log \left (-1+\frac {4 x}{3}\right )}{x}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.02, size = 13, normalized size = 1.00 \begin {gather*} -\frac {\log \left (-1+\frac {4 x}{3}\right )}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.63, size = 11, normalized size = 0.85 \begin {gather*} -\frac {\log \left (\frac {4}{3} \, x - 1\right )}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.15, size = 11, normalized size = 0.85 \begin {gather*} -\frac {\log \left (\frac {4}{3} \, x - 1\right )}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.16, size = 12, normalized size = 0.92
method | result | size |
norman | \(-\frac {\ln \left (\frac {4 x}{3}-1\right )}{x}\) | \(12\) |
risch | \(-\frac {\ln \left (\frac {4 x}{3}-1\right )}{x}\) | \(12\) |
derivativedivides | \(-\frac {4 \ln \left (\frac {4 x}{3}-1\right )}{3}+\frac {\ln \left (\frac {4 x}{3}-1\right ) \left (\frac {4 x}{3}-1\right )}{x}\) | \(25\) |
default | \(-\frac {4 \ln \left (\frac {4 x}{3}-1\right )}{3}+\frac {\ln \left (\frac {4 x}{3}-1\right ) \left (\frac {4 x}{3}-1\right )}{x}\) | \(25\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.49, size = 31, normalized size = 2.38 \begin {gather*} \frac {{\left (4 \, x - 3\right )} \log \left (4 \, x - 3\right ) + 3 \, \log \relax (3)}{3 \, x} - \frac {4}{3} \, \log \left (4 \, x - 3\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.19, size = 11, normalized size = 0.85 \begin {gather*} -\frac {\ln \left (\frac {4\,x}{3}-1\right )}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.13, size = 10, normalized size = 0.77 \begin {gather*} - \frac {\log {\left (\frac {4 x}{3} - 1 \right )}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________