Optimal. Leaf size=28 \[ \frac {-4+3 x+\frac {5 \log (x)}{x+4 x^4}}{-3-x+\log (x)} \]
________________________________________________________________________________________
Rubi [F] time = 4.51, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-15-x-16 x^2-60 x^3+12 x^4-128 x^5+64 x^7-256 x^8+\left (15+10 x+3 x^2+240 x^3+100 x^4+24 x^5+48 x^8\right ) \log (x)+\left (-5-80 x^3\right ) \log ^2(x)}{9 x^2+6 x^3+x^4+72 x^5+48 x^6+8 x^7+144 x^8+96 x^9+16 x^{10}+\left (-6 x^2-2 x^3-48 x^5-16 x^6-96 x^8-32 x^9\right ) \log (x)+\left (x^2+8 x^5+16 x^8\right ) \log ^2(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-15-x-16 x^2-60 x^3+12 x^4-128 x^5+64 x^7-256 x^8+\left (15+10 x+3 x^2+240 x^3+100 x^4+24 x^5+48 x^8\right ) \log (x)-\left (5+80 x^3\right ) \log ^2(x)}{x^2 \left (1+4 x^3\right )^2 (3+x-\log (x))^2} \, dx\\ &=\int \left (-\frac {5 \left (1+16 x^3\right )}{x^2 \left (1+4 x^3\right )^2}+\frac {-15+14 x-2 x^2+3 x^3+16 x^4-28 x^5+12 x^6}{x^2 \left (1+4 x^3\right ) (3+x-\log (x))^2}-\frac {3 \left (-5+x^2-80 x^3-20 x^4+8 x^5+16 x^8\right )}{x^2 \left (1+4 x^3\right )^2 (3+x-\log (x))}\right ) \, dx\\ &=-\left (3 \int \frac {-5+x^2-80 x^3-20 x^4+8 x^5+16 x^8}{x^2 \left (1+4 x^3\right )^2 (3+x-\log (x))} \, dx\right )-5 \int \frac {1+16 x^3}{x^2 \left (1+4 x^3\right )^2} \, dx+\int \frac {-15+14 x-2 x^2+3 x^3+16 x^4-28 x^5+12 x^6}{x^2 \left (1+4 x^3\right ) (3+x-\log (x))^2} \, dx\\ &=\frac {5}{x \left (1+4 x^3\right )}-3 \int \left (\frac {1}{3+x-\log (x)}-\frac {5}{x^2 (3+x-\log (x))}-\frac {20 x (3+x)}{\left (1+4 x^3\right )^2 (3+x-\log (x))}+\frac {20 x}{\left (1+4 x^3\right ) (3+x-\log (x))}\right ) \, dx+\int \left (-\frac {7}{(3+x-\log (x))^2}-\frac {15}{x^2 (3+x-\log (x))^2}+\frac {14}{x (3+x-\log (x))^2}+\frac {3 x}{(3+x-\log (x))^2}-\frac {5 \left (-1-12 x+8 x^2\right )}{\left (1+4 x^3\right ) (3+x-\log (x))^2}\right ) \, dx\\ &=\frac {5}{x \left (1+4 x^3\right )}+3 \int \frac {x}{(3+x-\log (x))^2} \, dx-3 \int \frac {1}{3+x-\log (x)} \, dx-5 \int \frac {-1-12 x+8 x^2}{\left (1+4 x^3\right ) (3+x-\log (x))^2} \, dx-7 \int \frac {1}{(3+x-\log (x))^2} \, dx+14 \int \frac {1}{x (3+x-\log (x))^2} \, dx-15 \int \frac {1}{x^2 (3+x-\log (x))^2} \, dx+15 \int \frac {1}{x^2 (3+x-\log (x))} \, dx+60 \int \frac {x (3+x)}{\left (1+4 x^3\right )^2 (3+x-\log (x))} \, dx-60 \int \frac {x}{\left (1+4 x^3\right ) (3+x-\log (x))} \, dx\\ &=\frac {5}{x \left (1+4 x^3\right )}+3 \int \frac {x}{(3+x-\log (x))^2} \, dx-3 \int \frac {1}{3+x-\log (x)} \, dx-5 \int \left (-\frac {1}{\left (1+4 x^3\right ) (3+x-\log (x))^2}-\frac {12 x}{\left (1+4 x^3\right ) (3+x-\log (x))^2}+\frac {8 x^2}{\left (1+4 x^3\right ) (3+x-\log (x))^2}\right ) \, dx-7 \int \frac {1}{(3+x-\log (x))^2} \, dx+14 \int \frac {1}{x (3+x-\log (x))^2} \, dx-15 \int \frac {1}{x^2 (3+x-\log (x))^2} \, dx+15 \int \frac {1}{x^2 (3+x-\log (x))} \, dx-60 \int \left (\frac {\sqrt [3]{-1}}{3\ 2^{2/3} \left (1+(-2)^{2/3} x\right ) (3+x-\log (x))}-\frac {1}{3\ 2^{2/3} \left (1+2^{2/3} x\right ) (3+x-\log (x))}-\frac {\left (-\frac {1}{2}\right )^{2/3}}{3 \left (1-\sqrt [3]{-1} 2^{2/3} x\right ) (3+x-\log (x))}\right ) \, dx+60 \int \left (\frac {3 x}{\left (1+4 x^3\right )^2 (3+x-\log (x))}+\frac {x^2}{\left (1+4 x^3\right )^2 (3+x-\log (x))}\right ) \, dx\\ &=\frac {5}{x \left (1+4 x^3\right )}+3 \int \frac {x}{(3+x-\log (x))^2} \, dx-3 \int \frac {1}{3+x-\log (x)} \, dx+5 \int \frac {1}{\left (1+4 x^3\right ) (3+x-\log (x))^2} \, dx-7 \int \frac {1}{(3+x-\log (x))^2} \, dx+14 \int \frac {1}{x (3+x-\log (x))^2} \, dx-15 \int \frac {1}{x^2 (3+x-\log (x))^2} \, dx+15 \int \frac {1}{x^2 (3+x-\log (x))} \, dx-40 \int \frac {x^2}{\left (1+4 x^3\right ) (3+x-\log (x))^2} \, dx+60 \int \frac {x}{\left (1+4 x^3\right ) (3+x-\log (x))^2} \, dx+60 \int \frac {x^2}{\left (1+4 x^3\right )^2 (3+x-\log (x))} \, dx+180 \int \frac {x}{\left (1+4 x^3\right )^2 (3+x-\log (x))} \, dx-\left (10 \sqrt [3]{-2}\right ) \int \frac {1}{\left (1+(-2)^{2/3} x\right ) (3+x-\log (x))} \, dx+\left (10 \sqrt [3]{2}\right ) \int \frac {1}{\left (1+2^{2/3} x\right ) (3+x-\log (x))} \, dx+\left (10 (-1)^{2/3} \sqrt [3]{2}\right ) \int \frac {1}{\left (1-\sqrt [3]{-1} 2^{2/3} x\right ) (3+x-\log (x))} \, dx\\ &=\frac {5}{x \left (1+4 x^3\right )}+3 \int \frac {x}{(3+x-\log (x))^2} \, dx-3 \int \frac {1}{3+x-\log (x)} \, dx+5 \int \left (-\frac {1}{3 \left (-1-(-2)^{2/3} x\right ) (3+x-\log (x))^2}-\frac {1}{3 \left (-1-2^{2/3} x\right ) (3+x-\log (x))^2}-\frac {1}{3 \left (-1+\sqrt [3]{-1} 2^{2/3} x\right ) (3+x-\log (x))^2}\right ) \, dx-7 \int \frac {1}{(3+x-\log (x))^2} \, dx+14 \int \frac {1}{x (3+x-\log (x))^2} \, dx-15 \int \frac {1}{x^2 (3+x-\log (x))^2} \, dx+15 \int \frac {1}{x^2 (3+x-\log (x))} \, dx-40 \int \left (\frac {1}{6 \sqrt [3]{2} \left (1+2^{2/3} x\right ) (3+x-\log (x))^2}+\frac {1}{6 \sqrt [3]{2} \left (-\sqrt [3]{-1}+2^{2/3} x\right ) (3+x-\log (x))^2}+\frac {1}{6 \sqrt [3]{2} \left ((-1)^{2/3}+2^{2/3} x\right ) (3+x-\log (x))^2}\right ) \, dx+60 \int \left (\frac {\sqrt [3]{-1}}{3\ 2^{2/3} \left (1+(-2)^{2/3} x\right ) (3+x-\log (x))^2}-\frac {1}{3\ 2^{2/3} \left (1+2^{2/3} x\right ) (3+x-\log (x))^2}-\frac {\left (-\frac {1}{2}\right )^{2/3}}{3 \left (1-\sqrt [3]{-1} 2^{2/3} x\right ) (3+x-\log (x))^2}\right ) \, dx+60 \int \frac {x^2}{\left (1+4 x^3\right )^2 (3+x-\log (x))} \, dx+180 \int \frac {x}{\left (1+4 x^3\right )^2 (3+x-\log (x))} \, dx-\left (10 \sqrt [3]{-2}\right ) \int \frac {1}{\left (1+(-2)^{2/3} x\right ) (3+x-\log (x))} \, dx+\left (10 \sqrt [3]{2}\right ) \int \frac {1}{\left (1+2^{2/3} x\right ) (3+x-\log (x))} \, dx+\left (10 (-1)^{2/3} \sqrt [3]{2}\right ) \int \frac {1}{\left (1-\sqrt [3]{-1} 2^{2/3} x\right ) (3+x-\log (x))} \, dx\\ &=\frac {5}{x \left (1+4 x^3\right )}-\frac {5}{3} \int \frac {1}{\left (-1-(-2)^{2/3} x\right ) (3+x-\log (x))^2} \, dx-\frac {5}{3} \int \frac {1}{\left (-1-2^{2/3} x\right ) (3+x-\log (x))^2} \, dx-\frac {5}{3} \int \frac {1}{\left (-1+\sqrt [3]{-1} 2^{2/3} x\right ) (3+x-\log (x))^2} \, dx+3 \int \frac {x}{(3+x-\log (x))^2} \, dx-3 \int \frac {1}{3+x-\log (x)} \, dx-7 \int \frac {1}{(3+x-\log (x))^2} \, dx+14 \int \frac {1}{x (3+x-\log (x))^2} \, dx-15 \int \frac {1}{x^2 (3+x-\log (x))^2} \, dx+15 \int \frac {1}{x^2 (3+x-\log (x))} \, dx+60 \int \frac {x^2}{\left (1+4 x^3\right )^2 (3+x-\log (x))} \, dx+180 \int \frac {x}{\left (1+4 x^3\right )^2 (3+x-\log (x))} \, dx+\left (10 \sqrt [3]{-2}\right ) \int \frac {1}{\left (1+(-2)^{2/3} x\right ) (3+x-\log (x))^2} \, dx-\left (10 \sqrt [3]{-2}\right ) \int \frac {1}{\left (1+(-2)^{2/3} x\right ) (3+x-\log (x))} \, dx-\left (10 \sqrt [3]{2}\right ) \int \frac {1}{\left (1+2^{2/3} x\right ) (3+x-\log (x))^2} \, dx+\left (10 \sqrt [3]{2}\right ) \int \frac {1}{\left (1+2^{2/3} x\right ) (3+x-\log (x))} \, dx-\left (10 (-1)^{2/3} \sqrt [3]{2}\right ) \int \frac {1}{\left (1-\sqrt [3]{-1} 2^{2/3} x\right ) (3+x-\log (x))^2} \, dx+\left (10 (-1)^{2/3} \sqrt [3]{2}\right ) \int \frac {1}{\left (1-\sqrt [3]{-1} 2^{2/3} x\right ) (3+x-\log (x))} \, dx-\frac {1}{3} \left (10\ 2^{2/3}\right ) \int \frac {1}{\left (1+2^{2/3} x\right ) (3+x-\log (x))^2} \, dx-\frac {1}{3} \left (10\ 2^{2/3}\right ) \int \frac {1}{\left (-\sqrt [3]{-1}+2^{2/3} x\right ) (3+x-\log (x))^2} \, dx-\frac {1}{3} \left (10\ 2^{2/3}\right ) \int \frac {1}{\left ((-1)^{2/3}+2^{2/3} x\right ) (3+x-\log (x))^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.07, size = 45, normalized size = 1.61 \begin {gather*} -\frac {x \left (-4+3 x-16 x^3+12 x^4\right )+5 \log (x)}{x \left (1+4 x^3\right ) (3+x-\log (x))} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.96, size = 55, normalized size = 1.96 \begin {gather*} -\frac {12 \, x^{5} - 16 \, x^{4} + 3 \, x^{2} - 4 \, x + 5 \, \log \relax (x)}{4 \, x^{5} + 12 \, x^{4} + x^{2} - {\left (4 \, x^{4} + x\right )} \log \relax (x) + 3 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.23, size = 71, normalized size = 2.54 \begin {gather*} -\frac {20 \, x^{2}}{4 \, x^{3} + 1} - \frac {12 \, x^{5} - 16 \, x^{4} + 3 \, x^{2} + x + 15}{4 \, x^{5} - 4 \, x^{4} \log \relax (x) + 12 \, x^{4} + x^{2} - x \log \relax (x) + 3 \, x} + \frac {5}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 57, normalized size = 2.04
method | result | size |
risch | \(\frac {5}{\left (4 x^{3}+1\right ) x}-\frac {12 x^{5}-16 x^{4}+3 x^{2}+x +15}{\left (4 x^{3}+1\right ) x \left (-\ln \relax (x )+3+x \right )}\) | \(57\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.41, size = 55, normalized size = 1.96 \begin {gather*} -\frac {12 \, x^{5} - 16 \, x^{4} + 3 \, x^{2} - 4 \, x + 5 \, \log \relax (x)}{4 \, x^{5} + 12 \, x^{4} + x^{2} - {\left (4 \, x^{4} + x\right )} \log \relax (x) + 3 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.65, size = 46, normalized size = 1.64 \begin {gather*} -\frac {5\,\ln \relax (x)+x\,\left (3\,\ln \relax (x)-13\right )+x^4\,\left (12\,\ln \relax (x)-52\right )}{x\,\left (4\,x^3+1\right )\,\left (x-\ln \relax (x)+3\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.31, size = 53, normalized size = 1.89 \begin {gather*} \frac {12 x^{5} - 16 x^{4} + 3 x^{2} + x + 15}{- 4 x^{5} - 12 x^{4} - x^{2} - 3 x + \left (4 x^{4} + x\right ) \log {\relax (x )}} + \frac {5}{4 x^{4} + x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________