Optimal. Leaf size=16 \[ 3-2^{3+\frac {1}{x}} (3+15 x) \]
________________________________________________________________________________________
Rubi [A] time = 0.06, antiderivative size = 14, normalized size of antiderivative = 0.88, number of steps used = 1, number of rules used = 1, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.043, Rules used = {2288} \begin {gather*} -3 2^{\frac {1}{x}+3} (5 x+1) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2288
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=-3 2^{3+\frac {1}{x}} (1+5 x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.02, size = 20, normalized size = 1.25 \begin {gather*} -\frac {3\ 2^{3+\frac {1}{x}} (\log (2)+x \log (32))}{\log (2)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.68, size = 12, normalized size = 0.75 \begin {gather*} -24 \cdot 2^{\left (\frac {1}{x}\right )} {\left (5 \, x + 1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int -\frac {24 \, {\left (5 \, x^{2} - {\left (5 \, x + 1\right )} \log \relax (2)\right )} 2^{\left (\frac {1}{x}\right )}}{x^{2}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.14, size = 12, normalized size = 0.75
method | result | size |
risch | \(\left (-24-120 x \right ) 2^{\frac {1}{x}}\) | \(12\) |
gosper | \(-24 \,{\mathrm e}^{\frac {\ln \relax (2)}{x}} \left (1+5 x \right )\) | \(15\) |
norman | \(\frac {-24 x \,{\mathrm e}^{\frac {\ln \relax (2)}{x}}-120 x^{2} {\mathrm e}^{\frac {\ln \relax (2)}{x}}}{x}\) | \(28\) |
derivativedivides | \(-\frac {24 \ln \relax (2) {\mathrm e}^{\frac {\ln \relax (2)}{x}}+120 \,{\mathrm e}^{\frac {\ln \relax (2)}{x}} x \ln \relax (2)}{\ln \relax (2)}\) | \(31\) |
default | \(-\frac {24 \ln \relax (2) {\mathrm e}^{\frac {\ln \relax (2)}{x}}+120 \,{\mathrm e}^{\frac {\ln \relax (2)}{x}} x \ln \relax (2)}{\ln \relax (2)}\) | \(31\) |
meijerg | \(-120 \ln \relax (2) \left (-\ln \left (-\frac {\ln \relax (2)}{x}\right )-\expIntegralEi \left (1, -\frac {\ln \relax (2)}{x}\right )-\ln \relax (x )+\ln \left (\ln \relax (2)\right )+i \pi \right )+24-24 \,{\mathrm e}^{\frac {\ln \relax (2)}{x}}-120 \ln \relax (2) \left (-\frac {x \left (2+\frac {2 \ln \relax (2)}{x}\right )}{2 \ln \relax (2)}+\frac {x \,{\mathrm e}^{\frac {\ln \relax (2)}{x}}}{\ln \relax (2)}+\ln \left (-\frac {\ln \relax (2)}{x}\right )+\expIntegralEi \left (1, -\frac {\ln \relax (2)}{x}\right )+1+\ln \relax (x )-\ln \left (\ln \relax (2)\right )-i \pi +\frac {x}{\ln \relax (2)}\right )\) | \(118\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [C] time = 0.58, size = 34, normalized size = 2.12 \begin {gather*} -120 \, {\rm Ei}\left (\frac {\log \relax (2)}{x}\right ) \log \relax (2) + 120 \, \Gamma \left (-1, -\frac {\log \relax (2)}{x}\right ) \log \relax (2) - 3 \cdot 2^{\frac {1}{x} + 3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.53, size = 12, normalized size = 0.75 \begin {gather*} -24\,2^{1/x}\,\left (5\,x+1\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.16, size = 12, normalized size = 0.75 \begin {gather*} \left (- 120 x - 24\right ) e^{\frac {\log {\relax (2 )}}{x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________