Optimal. Leaf size=25 \[ 5+x+x^2+\log \left (x \left (e^x-\frac {1}{5} e^{8 x} x\right )^2\right ) \]
________________________________________________________________________________________
Rubi [F] time = 0.88, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^x \left (-5-15 x-10 x^2\right )+e^{8 x} \left (3 x+17 x^2+2 x^3\right )}{-5 e^x x+e^{8 x} x^2} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{-x} \left (-e^x \left (-5-15 x-10 x^2\right )-e^{8 x} \left (3 x+17 x^2+2 x^3\right )\right )}{x \left (5-e^{7 x} x\right )} \, dx\\ &=\int \left (\frac {10 (1+7 x)}{x \left (-5+e^{7 x} x\right )}+\frac {3+17 x+2 x^2}{x}\right ) \, dx\\ &=10 \int \frac {1+7 x}{x \left (-5+e^{7 x} x\right )} \, dx+\int \frac {3+17 x+2 x^2}{x} \, dx\\ &=10 \int \left (\frac {7}{-5+e^{7 x} x}+\frac {1}{x \left (-5+e^{7 x} x\right )}\right ) \, dx+\int \left (17+\frac {3}{x}+2 x\right ) \, dx\\ &=17 x+x^2+3 \log (x)+10 \int \frac {1}{x \left (-5+e^{7 x} x\right )} \, dx+70 \int \frac {1}{-5+e^{7 x} x} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.13, size = 22, normalized size = 0.88 \begin {gather*} 3 x+x^2+\log (x)+2 \log \left (5-e^{7 x} x\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.68, size = 26, normalized size = 1.04 \begin {gather*} x^{2} + 3 \, x + 3 \, \log \relax (x) + 2 \, \log \left (\frac {x e^{\left (7 \, x\right )} - 5}{x}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.14, size = 20, normalized size = 0.80 \begin {gather*} x^{2} + 3 \, x + 2 \, \log \left (x e^{\left (7 \, x\right )} - 5\right ) + \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 25, normalized size = 1.00
method | result | size |
risch | \(x^{2}+3 x +3 \ln \relax (x )+2 \ln \left ({\mathrm e}^{7 x}-\frac {5}{x}\right )\) | \(25\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.48, size = 26, normalized size = 1.04 \begin {gather*} x^{2} + 3 \, x + 3 \, \log \relax (x) + 2 \, \log \left (\frac {x e^{\left (7 \, x\right )} - 5}{x}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.11, size = 20, normalized size = 0.80 \begin {gather*} 3\,x+2\,\ln \left (x\,{\mathrm {e}}^{7\,x}-5\right )+\ln \relax (x)+x^2 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.30, size = 22, normalized size = 0.88 \begin {gather*} x^{2} + 3 x + 3 \log {\relax (x )} + 2 \log {\left (e^{7 x} - \frac {5}{x} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________