Optimal. Leaf size=14 \[ \frac {2 \log (x)}{\left (-5+e^4\right ) x} \]
________________________________________________________________________________________
Rubi [A] time = 0.01, antiderivative size = 16, normalized size of antiderivative = 1.14, number of steps used = 3, number of rules used = 3, integrand size = 22, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.136, Rules used = {6, 12, 2303} \begin {gather*} -\frac {2 \log (x)}{\left (5-e^4\right ) x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6
Rule 12
Rule 2303
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {2-2 \log (x)}{\left (-5+e^4\right ) x^2} \, dx\\ &=\frac {\int \frac {2-2 \log (x)}{x^2} \, dx}{-5+e^4}\\ &=-\frac {2 \log (x)}{\left (5-e^4\right ) x}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.00, size = 14, normalized size = 1.00 \begin {gather*} \frac {2 \log (x)}{\left (-5+e^4\right ) x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.60, size = 14, normalized size = 1.00 \begin {gather*} \frac {2 \, \log \relax (x)}{x e^{4} - 5 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.15, size = 14, normalized size = 1.00 \begin {gather*} \frac {2 \, \log \relax (x)}{x e^{4} - 5 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.16, size = 14, normalized size = 1.00
method | result | size |
norman | \(\frac {2 \ln \relax (x )}{\left ({\mathrm e}^{4}-5\right ) x}\) | \(14\) |
risch | \(\frac {2 \ln \relax (x )}{\left ({\mathrm e}^{4}-5\right ) x}\) | \(14\) |
default | \(-\frac {2 \left (-\frac {\ln \relax (x )}{x}-\frac {1}{x}\right )}{{\mathrm e}^{4}-5}-\frac {2}{\left ({\mathrm e}^{4}-5\right ) x}\) | \(34\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.39, size = 27, normalized size = 1.93 \begin {gather*} \frac {2 \, {\left (\log \relax (x) + 1\right )}}{x {\left (e^{4} - 5\right )}} - \frac {2}{x {\left (e^{4} - 5\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.33, size = 13, normalized size = 0.93 \begin {gather*} \frac {2\,\ln \relax (x)}{x\,\left ({\mathrm {e}}^4-5\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.14, size = 12, normalized size = 0.86 \begin {gather*} \frac {2 \log {\relax (x )}}{- 5 x + x e^{4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________