Optimal. Leaf size=23 \[ \frac {5 e^{-e^{-x} (-4+x)+2 x}}{3 x^2} \]
________________________________________________________________________________________
Rubi [B] time = 0.26, antiderivative size = 50, normalized size of antiderivative = 2.17, number of steps used = 2, number of rules used = 2, integrand size = 59, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.034, Rules used = {1593, 2288} \begin {gather*} \frac {5 e^{e^{-x} (4-x)+x} \left (5 x-x^2\right )}{3 \left (e^{-x} (4-x)+e^{-x}\right ) x^3} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 1593
Rule 2288
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{-e^{-x} (-4+x)} \left (e^x (-4+x) \left (-25 x+5 x^2\right )+e^{2 x} \left (40-50 x+10 x^2\right )\right )}{x^3 (-12+3 x)} \, dx\\ &=\frac {5 e^{e^{-x} (4-x)+x} \left (5 x-x^2\right )}{3 \left (e^{-x}+e^{-x} (4-x)\right ) x^3}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.26, size = 23, normalized size = 1.00 \begin {gather*} \frac {5 e^{-e^{-x} (-4+x)+2 x}}{3 x^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.58, size = 50, normalized size = 2.17 \begin {gather*} \frac {5 \, e^{\left (-{\left (x^{2} - 8 \, x + 16\right )} e^{\left (-x - \log \left (x - 4\right )\right )} + 2 \, x + 2 \, \log \left (x - 4\right )\right )}}{3 \, {\left (x^{4} - 8 \, x^{3} + 16 \, x^{2}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {5 \, {\left (2 \, {\left (x^{2} - 5 \, x + 4\right )} e^{\left (2 \, x\right )} + {\left (x^{2} - 5 \, x\right )} e^{\left (x + \log \left (x - 4\right )\right )}\right )} e^{\left (-e^{\left (-x + \log \left (x - 4\right )\right )}\right )}}{3 \, {\left (x^{4} - 4 \, x^{3}\right )}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.16, size = 21, normalized size = 0.91
method | result | size |
norman | \(\frac {5 \,{\mathrm e}^{2 x} {\mathrm e}^{-\left (x -4\right ) {\mathrm e}^{-x}}}{3 x^{2}}\) | \(21\) |
risch | \(\frac {5 \,{\mathrm e}^{-x \,{\mathrm e}^{-x}+4 \,{\mathrm e}^{-x}+2 x}}{3 x^{2}}\) | \(24\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \frac {5}{3} \, \int \frac {{\left ({\left (x^{2} - 5 \, x\right )} {\left (x - 4\right )} e^{x} + 2 \, {\left (x^{2} - 5 \, x + 4\right )} e^{\left (2 \, x\right )}\right )} e^{\left (-{\left (x - 4\right )} e^{\left (-x\right )}\right )}}{x^{4} - 4 \, x^{3}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.72, size = 24, normalized size = 1.04 \begin {gather*} \frac {5\,{\mathrm {e}}^{4\,{\mathrm {e}}^{-x}}\,{\mathrm {e}}^{2\,x}\,{\mathrm {e}}^{-x\,{\mathrm {e}}^{-x}}}{3\,x^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.20, size = 19, normalized size = 0.83 \begin {gather*} \frac {5 e^{2 x} e^{- \left (x - 4\right ) e^{- x}}}{3 x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________