Optimal. Leaf size=16 \[ \left (x^2\right )^{25 \left (\frac {5 x}{4}+x \log (x)\right )} \]
________________________________________________________________________________________
Rubi [F] time = 0.58, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {1}{4} \left (x^2\right )^{\frac {1}{4} (125 x+100 x \log (x))} \left (250+200 \log (x)+(225+100 \log (x)) \log \left (x^2\right )\right ) \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{4} \int \left (x^2\right )^{\frac {1}{4} (125 x+100 x \log (x))} \left (250+200 \log (x)+(225+100 \log (x)) \log \left (x^2\right )\right ) \, dx\\ &=\frac {1}{4} \int \left (x^2\right )^{\frac {25}{4} x (5+4 \log (x))} \left (250+200 \log (x)+(225+100 \log (x)) \log \left (x^2\right )\right ) \, dx\\ &=\frac {1}{4} \int \left (250 \left (x^2\right )^{\frac {25}{4} x (5+4 \log (x))}+200 \left (x^2\right )^{\frac {25}{4} x (5+4 \log (x))} \log (x)+25 \left (x^2\right )^{\frac {25}{4} x (5+4 \log (x))} (9+4 \log (x)) \log \left (x^2\right )\right ) \, dx\\ &=\frac {25}{4} \int \left (x^2\right )^{\frac {25}{4} x (5+4 \log (x))} (9+4 \log (x)) \log \left (x^2\right ) \, dx+50 \int \left (x^2\right )^{\frac {25}{4} x (5+4 \log (x))} \log (x) \, dx+\frac {125}{2} \int \left (x^2\right )^{\frac {25}{4} x (5+4 \log (x))} \, dx\\ &=\frac {25}{4} \int \left (9 \left (x^2\right )^{\frac {25}{4} x (5+4 \log (x))} \log \left (x^2\right )+4 \left (x^2\right )^{\frac {25}{4} x (5+4 \log (x))} \log (x) \log \left (x^2\right )\right ) \, dx+50 \int \left (x^2\right )^{\frac {25}{4} x (5+4 \log (x))} \log (x) \, dx+\frac {125}{2} \int \left (x^2\right )^{\frac {25}{4} x (5+4 \log (x))} \, dx\\ &=25 \int \left (x^2\right )^{\frac {25}{4} x (5+4 \log (x))} \log (x) \log \left (x^2\right ) \, dx+50 \int \left (x^2\right )^{\frac {25}{4} x (5+4 \log (x))} \log (x) \, dx+\frac {225}{4} \int \left (x^2\right )^{\frac {25}{4} x (5+4 \log (x))} \log \left (x^2\right ) \, dx+\frac {125}{2} \int \left (x^2\right )^{\frac {25}{4} x (5+4 \log (x))} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.12, size = 19, normalized size = 1.19 \begin {gather*} x^{25 x \log \left (x^2\right )} \left (x^2\right )^{125 x/4} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.65, size = 14, normalized size = 0.88 \begin {gather*} e^{\left (50 \, x \log \relax (x)^{2} + \frac {125}{2} \, x \log \relax (x)\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {25}{4} \, {\left ({\left (4 \, \log \relax (x) + 9\right )} \log \left (x^{2}\right ) + 8 \, \log \relax (x) + 10\right )} {\left (x^{2}\right )}^{25 \, x \log \relax (x) + \frac {125}{4} \, x}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.07, size = 17, normalized size = 1.06
method | result | size |
default | \({\mathrm e}^{\frac {\left (100 x \ln \relax (x )+125 x \right ) \ln \left (x^{2}\right )}{4}}\) | \(17\) |
norman | \({\mathrm e}^{\frac {\left (100 x \ln \relax (x )+125 x \right ) \ln \left (x^{2}\right )}{4}}\) | \(17\) |
risch | \({\mathrm e}^{\frac {25 x \left (4 \ln \relax (x )+5\right ) \left (-i \pi \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )+2 i \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}-i \pi \mathrm {csgn}\left (i x^{2}\right )^{3}+4 \ln \relax (x )\right )}{8}}\) | \(65\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.46, size = 14, normalized size = 0.88 \begin {gather*} e^{\left (50 \, x \log \relax (x)^{2} + \frac {125}{2} \, x \log \relax (x)\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.33, size = 17, normalized size = 1.06 \begin {gather*} x^{25\,x\,\ln \left (x^2\right )}\,{\left (x^2\right )}^{\frac {125\,x}{4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.31, size = 17, normalized size = 1.06 \begin {gather*} e^{2 \left (25 x \log {\relax (x )} + \frac {125 x}{4}\right ) \log {\relax (x )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________