Optimal. Leaf size=32 \[ x+\frac {\log \left (\frac {\left (-4+\frac {3}{x}\right )^2}{x^2}\right )}{\log (-x+5 (2-\log (x)))} \]
________________________________________________________________________________________
Rubi [F] time = 2.62, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\left (15-17 x-4 x^2\right ) \log \left (\frac {9-24 x+16 x^2}{x^4}\right )+\left (-120+92 x-8 x^2+(60-40 x) \log (x)\right ) \log (10-x-5 \log (x))+\left (30 x-43 x^2+4 x^3+\left (-15 x+20 x^2\right ) \log (x)\right ) \log ^2(10-x-5 \log (x))}{\left (30 x-43 x^2+4 x^3+\left (-15 x+20 x^2\right ) \log (x)\right ) \log ^2(10-x-5 \log (x))} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {\left (15-17 x-4 x^2\right ) \log \left (\frac {(-3+4 x)^2}{x^4}\right )+(-10+x+5 \log (x)) \log (10-x-5 \log (x)) (12-8 x+x (-3+4 x) \log (10-x-5 \log (x)))}{(3-4 x) x (10-x-5 \log (x)) \log ^2(10-x-5 \log (x))} \, dx\\ &=\int \left (1-\frac {(5+x) \log \left (\frac {(-3+4 x)^2}{x^4}\right )}{x (-10+x+5 \log (x)) \log ^2(10-x-5 \log (x))}-\frac {4 (-3+2 x)}{x (-3+4 x) \log (10-x-5 \log (x))}\right ) \, dx\\ &=x-4 \int \frac {-3+2 x}{x (-3+4 x) \log (10-x-5 \log (x))} \, dx-\int \frac {(5+x) \log \left (\frac {(-3+4 x)^2}{x^4}\right )}{x (-10+x+5 \log (x)) \log ^2(10-x-5 \log (x))} \, dx\\ &=x-4 \int \left (\frac {1}{x \log (10-x-5 \log (x))}-\frac {2}{(-3+4 x) \log (10-x-5 \log (x))}\right ) \, dx-\int \left (\frac {\log \left (\frac {(-3+4 x)^2}{x^4}\right )}{(-10+x+5 \log (x)) \log ^2(10-x-5 \log (x))}+\frac {5 \log \left (\frac {(-3+4 x)^2}{x^4}\right )}{x (-10+x+5 \log (x)) \log ^2(10-x-5 \log (x))}\right ) \, dx\\ &=x-4 \int \frac {1}{x \log (10-x-5 \log (x))} \, dx-5 \int \frac {\log \left (\frac {(-3+4 x)^2}{x^4}\right )}{x (-10+x+5 \log (x)) \log ^2(10-x-5 \log (x))} \, dx+8 \int \frac {1}{(-3+4 x) \log (10-x-5 \log (x))} \, dx-\int \frac {\log \left (\frac {(-3+4 x)^2}{x^4}\right )}{(-10+x+5 \log (x)) \log ^2(10-x-5 \log (x))} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.11, size = 27, normalized size = 0.84 \begin {gather*} x+\frac {\log \left (\frac {(-3+4 x)^2}{x^4}\right )}{\log (10-x-5 \log (x))} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.81, size = 41, normalized size = 1.28 \begin {gather*} \frac {x \log \left (-x - 5 \, \log \relax (x) + 10\right ) + \log \left (\frac {16 \, x^{2} - 24 \, x + 9}{x^{4}}\right )}{\log \left (-x - 5 \, \log \relax (x) + 10\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.26, size = 42, normalized size = 1.31 \begin {gather*} x + \frac {\log \left (16 \, x^{2} - 24 \, x + 9\right )}{\log \left (-x - 5 \, \log \relax (x) + 10\right )} - \frac {4 \, \log \relax (x)}{\log \left (-x - 5 \, \log \relax (x) + 10\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.14, size = 390, normalized size = 12.19
method | result | size |
risch | \(x +\frac {8 \ln \relax (2)-8 \ln \relax (x )-i \pi \mathrm {csgn}\left (i \left (x -\frac {3}{4}\right )\right )^{2} \mathrm {csgn}\left (i \left (x -\frac {3}{4}\right )^{2}\right )-i \pi \mathrm {csgn}\left (\frac {i \left (x -\frac {3}{4}\right )^{2}}{x^{4}}\right )^{3}+i \pi \mathrm {csgn}\left (i x^{4}\right )^{3}+i \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right ) \mathrm {csgn}\left (i x^{3}\right )-i \pi \mathrm {csgn}\left (i \left (x -\frac {3}{4}\right )^{2}\right )^{3}-i \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{4}\right )^{2}-i \pi \,\mathrm {csgn}\left (\frac {i}{x^{4}}\right ) \mathrm {csgn}\left (i \left (x -\frac {3}{4}\right )^{2}\right ) \mathrm {csgn}\left (\frac {i \left (x -\frac {3}{4}\right )^{2}}{x^{4}}\right )+i \pi \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )+i \pi \mathrm {csgn}\left (i x^{2}\right )^{3}-i \pi \,\mathrm {csgn}\left (i x^{2}\right ) \mathrm {csgn}\left (i x^{3}\right )^{2}+4 \ln \left (x -\frac {3}{4}\right )+i \pi \mathrm {csgn}\left (i x^{3}\right )^{3}+i \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{3}\right ) \mathrm {csgn}\left (i x^{4}\right )+2 i \pi \,\mathrm {csgn}\left (i \left (x -\frac {3}{4}\right )\right ) \mathrm {csgn}\left (i \left (x -\frac {3}{4}\right )^{2}\right )^{2}+i \pi \,\mathrm {csgn}\left (i \left (x -\frac {3}{4}\right )^{2}\right ) \mathrm {csgn}\left (\frac {i \left (x -\frac {3}{4}\right )^{2}}{x^{4}}\right )^{2}-2 i \pi \mathrm {csgn}\left (i x^{2}\right )^{2} \mathrm {csgn}\left (i x \right )+i \pi \,\mathrm {csgn}\left (\frac {i}{x^{4}}\right ) \mathrm {csgn}\left (\frac {i \left (x -\frac {3}{4}\right )^{2}}{x^{4}}\right )^{2}-i \pi \,\mathrm {csgn}\left (i x^{3}\right ) \mathrm {csgn}\left (i x^{4}\right )^{2}-i \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{3}\right )^{2}}{2 \ln \left (-5 \ln \relax (x )+10-x \right )}\) | \(390\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.42, size = 38, normalized size = 1.19 \begin {gather*} \frac {x \log \left (-x - 5 \, \log \relax (x) + 10\right ) + 2 \, \log \left (4 \, x - 3\right ) - 4 \, \log \relax (x)}{\log \left (-x - 5 \, \log \relax (x) + 10\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.05, size = 30, normalized size = 0.94 \begin {gather*} x+\frac {\ln \left (\frac {16\,x^2-24\,x+9}{x^4}\right )}{\ln \left (10-5\,\ln \relax (x)-x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.61, size = 26, normalized size = 0.81 \begin {gather*} x + \frac {\log {\left (\frac {16 x^{2} - 24 x + 9}{x^{4}} \right )}}{\log {\left (- x - 5 \log {\relax (x )} + 10 \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________