Optimal. Leaf size=28 \[ \log (16) \left (e^{2 x/5} \log (4-x)+\frac {\log \left (2 x^3\right )}{x}\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.67, antiderivative size = 48, normalized size of antiderivative = 1.71, number of steps used = 5, number of rules used = 4, integrand size = 78, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.051, Rules used = {1593, 6742, 2288, 2303} \begin {gather*} \frac {\log (16) \log \left (2 x^3\right )}{x}+\frac {e^{2 x/5} \log (16) (4 \log (4-x)-x \log (4-x))}{4-x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 1593
Rule 2288
Rule 2303
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {5 e^{2 x/5} x^2 \log (16)+(-60+15 x) \log (16)+e^{2 x/5} \left (-8 x^2+2 x^3\right ) \log (16) \log (4-x)+(20-5 x) \log (16) \log \left (2 x^3\right )}{x^2 (-20+5 x)} \, dx\\ &=\int \left (\frac {e^{2 x/5} \log (16) (5-8 \log (4-x)+2 x \log (4-x))}{5 (-4+x)}-\frac {\log (16) \left (-3+\log \left (2 x^3\right )\right )}{x^2}\right ) \, dx\\ &=\frac {1}{5} \log (16) \int \frac {e^{2 x/5} (5-8 \log (4-x)+2 x \log (4-x))}{-4+x} \, dx-\log (16) \int \frac {-3+\log \left (2 x^3\right )}{x^2} \, dx\\ &=\frac {e^{2 x/5} \log (16) (4 \log (4-x)-x \log (4-x))}{4-x}+\frac {\log (16) \log \left (2 x^3\right )}{x}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.14, size = 28, normalized size = 1.00 \begin {gather*} \frac {\log (16) \left (e^{2 x/5} x \log (4-x)+\log \left (2 x^3\right )\right )}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.55, size = 29, normalized size = 1.04 \begin {gather*} \frac {4 \, {\left (x e^{\left (\frac {2}{5} \, x\right )} \log \relax (2) \log \left (-x + 4\right ) + \log \relax (2) \log \left (2 \, x^{3}\right )\right )}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.23, size = 38, normalized size = 1.36
method | result | size |
default | \(4 \ln \relax (2) {\mathrm e}^{\frac {2 x}{5}} \ln \left (-x +4\right )+\frac {4 \ln \relax (2) \ln \left (x^{3}\right )}{x}+\frac {4 \ln \relax (2)^{2}}{x}\) | \(38\) |
risch | \(4 \ln \relax (2) {\mathrm e}^{\frac {2 x}{5}} \ln \left (-x +4\right )+\frac {2 \ln \relax (2) \left (-i \pi \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )+2 i \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}-i \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right ) \mathrm {csgn}\left (i x^{3}\right )+i \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{3}\right )^{2}-i \pi \mathrm {csgn}\left (i x^{2}\right )^{3}+i \pi \,\mathrm {csgn}\left (i x^{2}\right ) \mathrm {csgn}\left (i x^{3}\right )^{2}-i \pi \mathrm {csgn}\left (i x^{3}\right )^{3}+2 \ln \relax (2)+6 \ln \relax (x )\right )}{x}\) | \(155\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} -4 \, e^{\frac {8}{5}} E_{1}\left (-\frac {2}{5} \, x + \frac {8}{5}\right ) \log \relax (2) - 3 \, {\left (\frac {4}{x} + \log \left (x - 4\right ) - \log \relax (x)\right )} \log \relax (2) + 3 \, {\left (\log \left (x - 4\right ) - \log \relax (x)\right )} \log \relax (2) - 4 \, \int \frac {e^{\left (\frac {2}{5} \, x\right )}}{x - 4}\,{d x} \log \relax (2) + \frac {4 \, {\left (x e^{\left (\frac {2}{5} \, x\right )} \log \relax (2) \log \left (-x + 4\right ) + \log \relax (2)^{2} + 3 \, \log \relax (2) \log \relax (x) + 3 \, \log \relax (2)\right )}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.87, size = 28, normalized size = 1.00 \begin {gather*} \frac {4\,\ln \relax (2)\,\ln \left (2\,x^3\right )}{x}+4\,{\mathrm {e}}^{\frac {2\,x}{5}}\,\ln \relax (2)\,\ln \left (4-x\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.97, size = 29, normalized size = 1.04 \begin {gather*} 4 e^{\frac {2 x}{5}} \log {\relax (2 )} \log {\left (4 - x \right )} + \frac {4 \log {\relax (2 )} \log {\left (2 x^{3} \right )}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________