Optimal. Leaf size=30 \[ e^x \left (e^5+\frac {x+\log (\log (x))}{\frac {x}{2}+\frac {4}{5} x (1+x)}\right ) \]
________________________________________________________________________________________
Rubi [F] time = 4.02, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^x (130+80 x)+e^x \left (50 x^2+80 x^3+e^5 \left (169 x^2+208 x^3+64 x^4\right )\right ) \log (x)+e^x \left (-130-30 x+80 x^2\right ) \log (x) \log (\log (x))}{\left (169 x^2+208 x^3+64 x^4\right ) \log (x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^x (130+80 x)+e^x \left (50 x^2+80 x^3+e^5 \left (169 x^2+208 x^3+64 x^4\right )\right ) \log (x)+e^x \left (-130-30 x+80 x^2\right ) \log (x) \log (\log (x))}{x^2 \left (169+208 x+64 x^2\right ) \log (x)} \, dx\\ &=\int \frac {e^x (130+80 x)+e^x \left (50 x^2+80 x^3+e^5 \left (169 x^2+208 x^3+64 x^4\right )\right ) \log (x)+e^x \left (-130-30 x+80 x^2\right ) \log (x) \log (\log (x))}{x^2 (13+8 x)^2 \log (x)} \, dx\\ &=\int \frac {e^x \left (130+80 x+\log (x) \left (x^2 \left (50+80 x+e^5 (13+8 x)^2\right )+10 \left (-13-3 x+8 x^2\right ) \log (\log (x))\right )\right )}{x^2 (13+8 x)^2 \log (x)} \, dx\\ &=\int \left (\frac {e^x \left (130+80 x+50 \left (1+\frac {169 e^5}{50}\right ) x^2 \log (x)+80 \left (1+\frac {13 e^5}{5}\right ) x^3 \log (x)+64 e^5 x^4 \log (x)\right )}{x^2 (13+8 x)^2 \log (x)}+\frac {10 e^x \left (-13-3 x+8 x^2\right ) \log (\log (x))}{x^2 (13+8 x)^2}\right ) \, dx\\ &=10 \int \frac {e^x \left (-13-3 x+8 x^2\right ) \log (\log (x))}{x^2 (13+8 x)^2} \, dx+\int \frac {e^x \left (130+80 x+50 \left (1+\frac {169 e^5}{50}\right ) x^2 \log (x)+80 \left (1+\frac {13 e^5}{5}\right ) x^3 \log (x)+64 e^5 x^4 \log (x)\right )}{x^2 (13+8 x)^2 \log (x)} \, dx\\ &=10 \int \left (-\frac {e^x \log (\log (x))}{13 x^2}+\frac {e^x \log (\log (x))}{13 x}+\frac {64 e^x \log (\log (x))}{13 (13+8 x)^2}-\frac {8 e^x \log (\log (x))}{13 (13+8 x)}\right ) \, dx+\int \frac {e^x \left (130+80 x+x^2 \left (50+80 x+e^5 (13+8 x)^2\right ) \log (x)\right )}{x^2 (13+8 x)^2 \log (x)} \, dx\\ &=-\left (\frac {10}{13} \int \frac {e^x \log (\log (x))}{x^2} \, dx\right )+\frac {10}{13} \int \frac {e^x \log (\log (x))}{x} \, dx-\frac {80}{13} \int \frac {e^x \log (\log (x))}{13+8 x} \, dx+\frac {640}{13} \int \frac {e^x \log (\log (x))}{(13+8 x)^2} \, dx+\int \left (\frac {e^x \left (50+169 e^5+16 \left (5+13 e^5\right ) x+64 e^5 x^2\right )}{(13+8 x)^2}+\frac {10 e^x}{x^2 (13+8 x) \log (x)}\right ) \, dx\\ &=-\left (\frac {10}{13} \int \frac {e^x \log (\log (x))}{x^2} \, dx\right )+\frac {10}{13} \int \frac {e^x \log (\log (x))}{x} \, dx-\frac {80}{13} \int \frac {e^x \log (\log (x))}{13+8 x} \, dx+10 \int \frac {e^x}{x^2 (13+8 x) \log (x)} \, dx+\frac {640}{13} \int \frac {e^x \log (\log (x))}{(13+8 x)^2} \, dx+\int \frac {e^x \left (50+169 e^5+16 \left (5+13 e^5\right ) x+64 e^5 x^2\right )}{(13+8 x)^2} \, dx\\ &=-\left (\frac {10}{13} \int \frac {e^x \log (\log (x))}{x^2} \, dx\right )+\frac {10}{13} \int \frac {e^x \log (\log (x))}{x} \, dx-\frac {80}{13} \int \frac {e^x \log (\log (x))}{13+8 x} \, dx+10 \int \left (\frac {e^x}{13 x^2 \log (x)}-\frac {8 e^x}{169 x \log (x)}+\frac {64 e^x}{169 (13+8 x) \log (x)}\right ) \, dx+\frac {640}{13} \int \frac {e^x \log (\log (x))}{(13+8 x)^2} \, dx+\int \left (e^{5+x}-\frac {80 e^x}{(13+8 x)^2}+\frac {10 e^x}{13+8 x}\right ) \, dx\\ &=-\left (\frac {80}{169} \int \frac {e^x}{x \log (x)} \, dx\right )+\frac {10}{13} \int \frac {e^x}{x^2 \log (x)} \, dx-\frac {10}{13} \int \frac {e^x \log (\log (x))}{x^2} \, dx+\frac {10}{13} \int \frac {e^x \log (\log (x))}{x} \, dx+\frac {640}{169} \int \frac {e^x}{(13+8 x) \log (x)} \, dx-\frac {80}{13} \int \frac {e^x \log (\log (x))}{13+8 x} \, dx+10 \int \frac {e^x}{13+8 x} \, dx+\frac {640}{13} \int \frac {e^x \log (\log (x))}{(13+8 x)^2} \, dx-80 \int \frac {e^x}{(13+8 x)^2} \, dx+\int e^{5+x} \, dx\\ &=e^{5+x}+\frac {10 e^x}{13+8 x}+\frac {5 \text {Ei}\left (\frac {1}{8} (13+8 x)\right )}{4 e^{13/8}}-\frac {80}{169} \int \frac {e^x}{x \log (x)} \, dx+\frac {10}{13} \int \frac {e^x}{x^2 \log (x)} \, dx-\frac {10}{13} \int \frac {e^x \log (\log (x))}{x^2} \, dx+\frac {10}{13} \int \frac {e^x \log (\log (x))}{x} \, dx+\frac {640}{169} \int \frac {e^x}{(13+8 x) \log (x)} \, dx-\frac {80}{13} \int \frac {e^x \log (\log (x))}{13+8 x} \, dx-10 \int \frac {e^x}{13+8 x} \, dx+\frac {640}{13} \int \frac {e^x \log (\log (x))}{(13+8 x)^2} \, dx\\ &=e^{5+x}+\frac {10 e^x}{13+8 x}-\frac {80}{169} \int \frac {e^x}{x \log (x)} \, dx+\frac {10}{13} \int \frac {e^x}{x^2 \log (x)} \, dx-\frac {10}{13} \int \frac {e^x \log (\log (x))}{x^2} \, dx+\frac {10}{13} \int \frac {e^x \log (\log (x))}{x} \, dx+\frac {640}{169} \int \frac {e^x}{(13+8 x) \log (x)} \, dx-\frac {80}{13} \int \frac {e^x \log (\log (x))}{13+8 x} \, dx+\frac {640}{13} \int \frac {e^x \log (\log (x))}{(13+8 x)^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.35, size = 33, normalized size = 1.10 \begin {gather*} \frac {e^x \left (x \left (10+e^5 (13+8 x)\right )+10 \log (\log (x))\right )}{x (13+8 x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.62, size = 39, normalized size = 1.30 \begin {gather*} \frac {{\left ({\left (8 \, x^{2} + 13 \, x\right )} e^{5} + 10 \, x\right )} e^{x} + 10 \, e^{x} \log \left (\log \relax (x)\right )}{8 \, x^{2} + 13 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.24, size = 41, normalized size = 1.37 \begin {gather*} \frac {8 \, x^{2} e^{\left (x + 5\right )} + 13 \, x e^{\left (x + 5\right )} + 10 \, x e^{x} + 10 \, e^{x} \log \left (\log \relax (x)\right )}{8 \, x^{2} + 13 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 40, normalized size = 1.33
method | result | size |
risch | \(\frac {10 \,{\mathrm e}^{x} \ln \left (\ln \relax (x )\right )}{\left (8 x +13\right ) x}+\frac {\left (8 x \,{\mathrm e}^{5}+13 \,{\mathrm e}^{5}+10\right ) {\mathrm e}^{x}}{8 x +13}\) | \(40\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.41, size = 39, normalized size = 1.30 \begin {gather*} \frac {{\left (8 \, x^{2} e^{5} + x {\left (13 \, e^{5} + 10\right )}\right )} e^{x} + 10 \, e^{x} \log \left (\log \relax (x)\right )}{8 \, x^{2} + 13 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.03 \begin {gather*} \int \frac {{\mathrm {e}}^x\,\left (80\,x+130\right )+{\mathrm {e}}^x\,\ln \relax (x)\,\left ({\mathrm {e}}^5\,\left (64\,x^4+208\,x^3+169\,x^2\right )+50\,x^2+80\,x^3\right )-\ln \left (\ln \relax (x)\right )\,{\mathrm {e}}^x\,\ln \relax (x)\,\left (-80\,x^2+30\,x+130\right )}{\ln \relax (x)\,\left (64\,x^4+208\,x^3+169\,x^2\right )} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.53, size = 36, normalized size = 1.20 \begin {gather*} \frac {\left (8 x^{2} e^{5} + 10 x + 13 x e^{5} + 10 \log {\left (\log {\relax (x )} \right )}\right ) e^{x}}{8 x^{2} + 13 x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________