Optimal. Leaf size=28 \[ 5-x+\log \left (\frac {1}{\log (2) \left (2-x+\left (2-e^9\right ) \log (x)\right )}\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.26, antiderivative size = 22, normalized size of antiderivative = 0.79, number of steps used = 4, number of rules used = 3, integrand size = 48, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.062, Rules used = {6741, 6742, 6684} \begin {gather*} -x-\log \left (-x+\left (2-e^9\right ) \log (x)+2\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6684
Rule 6741
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-2 \left (1-\frac {e^9}{2}\right )-x+x^2-\left (2 x-e^9 x\right ) \log (x)}{2 x-x^2-\left (-2 x+e^9 x\right ) \log (x)} \, dx\\ &=\int \left (-1+\frac {-2+e^9+x}{x \left (2-x+2 \left (1-\frac {e^9}{2}\right ) \log (x)\right )}\right ) \, dx\\ &=-x+\int \frac {-2+e^9+x}{x \left (2-x+2 \left (1-\frac {e^9}{2}\right ) \log (x)\right )} \, dx\\ &=-x-\log \left (2-x+\left (2-e^9\right ) \log (x)\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.23, size = 23, normalized size = 0.82 \begin {gather*} -x-\log \left (2-x+2 \log (x)-e^9 \log (x)\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.10, size = 17, normalized size = 0.61 \begin {gather*} -x - \log \left ({\left (e^{9} - 2\right )} \log \relax (x) + x - 2\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.17, size = 19, normalized size = 0.68 \begin {gather*} -x - \log \left (e^{9} \log \relax (x) + x - 2 \, \log \relax (x) - 2\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 20, normalized size = 0.71
method | result | size |
norman | \(-x -\ln \left (\ln \relax (x ) {\mathrm e}^{9}-2 \ln \relax (x )+x -2\right )\) | \(20\) |
risch | \(-x -\ln \left (\ln \relax (x )+\frac {x -2}{{\mathrm e}^{9}-2}\right )\) | \(21\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.38, size = 24, normalized size = 0.86 \begin {gather*} -x - \log \left (\frac {{\left (e^{9} - 2\right )} \log \relax (x) + x - 2}{e^{9} - 2}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.52, size = 19, normalized size = 0.68 \begin {gather*} -x-\ln \left (x-2\,\ln \relax (x)+{\mathrm {e}}^9\,\ln \relax (x)-2\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.22, size = 15, normalized size = 0.54 \begin {gather*} - x - \log {\left (\frac {x - 2}{-2 + e^{9}} + \log {\relax (x )} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________