Optimal. Leaf size=22 \[ \log \left (9+4 \left (2+\sqrt [4]{3}+2 e^2-x\right )^2\right ) \]
________________________________________________________________________________________
Rubi [B] time = 0.05, antiderivative size = 51, normalized size of antiderivative = 2.32, number of steps used = 1, number of rules used = 1, integrand size = 67, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.015, Rules used = {1587} \begin {gather*} \log \left (4 x^2-16 x+16 e^2 (2-x)+8 \sqrt [4]{3} \left (2 \left (1+e^2\right )-x\right )+16 e^4+4 \sqrt {3}+25\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 1587
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\log \left (25+4 \sqrt {3}+16 e^4+16 e^2 (2-x)+8 \sqrt [4]{3} \left (2 \left (1+e^2\right )-x\right )-16 x+4 x^2\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.06, size = 59, normalized size = 2.68 \begin {gather*} \log \left (25+16 \sqrt [4]{3}+4 \sqrt {3}+32 e^2+16 \sqrt [4]{3} e^2+16 e^4-16 x-8 \sqrt [4]{3} x-16 e^2 x+4 x^2\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 1.31, size = 39, normalized size = 1.77 \begin {gather*} \log \left (4 \, x^{2} - 16 \, {\left (x - 2\right )} e^{2} - 8 \cdot 3^{\frac {1}{4}} {\left (x - 2 \, e^{2} - 2\right )} - 16 \, x + 4 \, \sqrt {3} + 16 \, e^{4} + 25\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.18, size = 45, normalized size = 2.05 \begin {gather*} \log \left (4 \, x^{2} - 16 \, x e^{2} + 16 \, {\left (3^{\frac {1}{4}} + 2\right )} e^{2} - 8 \cdot 3^{\frac {1}{4}} x - 16 \, x + 4 \, \sqrt {3} + 16 \cdot 3^{\frac {1}{4}} + 16 \, e^{4} + 25\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.42, size = 44, normalized size = 2.00
method | result | size |
derivativedivides | \(\ln \left (4 \sqrt {3}+\left (16 \,{\mathrm e}^{2}-8 x +16\right ) 3^{\frac {1}{4}}+16 \,{\mathrm e}^{4}+\left (-16 x +32\right ) {\mathrm e}^{2}+4 x^{2}-16 x +25\right )\) | \(44\) |
risch | \(\ln \left (4 x^{2}+\left (-8 \,3^{\frac {1}{4}}-16 \,{\mathrm e}^{2}-16\right ) x +16 \,{\mathrm e}^{4}+16 \,3^{\frac {1}{4}} {\mathrm e}^{2}+32 \,{\mathrm e}^{2}+4 \sqrt {3}+16 \,3^{\frac {1}{4}}+25\right )\) | \(47\) |
default | \(\ln \left (16 \,{\mathrm e}^{4}+16 \,3^{\frac {1}{4}} {\mathrm e}^{2}-16 \,{\mathrm e}^{2} x -8 \,3^{\frac {1}{4}} x +4 x^{2}+32 \,{\mathrm e}^{2}+4 \sqrt {3}+16 \,3^{\frac {1}{4}}-16 x +25\right )\) | \(50\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.44, size = 39, normalized size = 1.77 \begin {gather*} \log \left (4 \, x^{2} - 16 \, {\left (x - 2\right )} e^{2} - 8 \cdot 3^{\frac {1}{4}} {\left (x - 2 \, e^{2} - 2\right )} - 16 \, x + 4 \, \sqrt {3} + 16 \, e^{4} + 25\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.05 \begin {gather*} \int -\frac {16\,{\mathrm {e}}^2-8\,x+8\,3^{1/4}+16}{16\,{\mathrm {e}}^4-16\,x+4\,\sqrt {3}+3^{1/4}\,\left (16\,{\mathrm {e}}^2-8\,x+16\right )+4\,x^2-{\mathrm {e}}^2\,\left (16\,x-32\right )+25} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.35, size = 58, normalized size = 2.64 \begin {gather*} \log {\left (4 x^{2} + x \left (- 16 e^{2} - 16 - 8 \sqrt [4]{3}\right ) + 4 \sqrt {3} + 16 \sqrt [4]{3} + 25 + 16 \sqrt [4]{3} e^{2} + 32 e^{2} + 16 e^{4} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________