Optimal. Leaf size=18 \[ 2+\log \left (\left (e^3+\frac {625}{e^x+x}\right )^2\right ) \]
________________________________________________________________________________________
Rubi [F] time = 0.43, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-1250-1250 e^x}{e^{3+2 x}+625 x+e^3 x^2+e^x \left (625+2 e^3 x\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {1250 \left (-1-e^x\right )}{e^{3+2 x}+625 x+e^3 x^2+e^x \left (625+2 e^3 x\right )} \, dx\\ &=1250 \int \frac {-1-e^x}{e^{3+2 x}+625 x+e^3 x^2+e^x \left (625+2 e^3 x\right )} \, dx\\ &=1250 \int \left (\frac {-1+x}{625 \left (e^x+x\right )}-\frac {625-e^3+e^3 x}{625 \left (625+e^{3+x}+e^3 x\right )}\right ) \, dx\\ &=2 \int \frac {-1+x}{e^x+x} \, dx-2 \int \frac {625-e^3+e^3 x}{625+e^{3+x}+e^3 x} \, dx\\ &=2 \int \left (-\frac {1}{e^x+x}+\frac {x}{e^x+x}\right ) \, dx-2 \int \left (\frac {625 \left (1-\frac {e^3}{625}\right )}{625+e^{3+x}+e^3 x}+\frac {e^3 x}{625+e^{3+x}+e^3 x}\right ) \, dx\\ &=-\left (2 \int \frac {1}{e^x+x} \, dx\right )+2 \int \frac {x}{e^x+x} \, dx-\left (2 e^3\right ) \int \frac {x}{625+e^{3+x}+e^3 x} \, dx-\left (2 \left (625-e^3\right )\right ) \int \frac {1}{625+e^{3+x}+e^3 x} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.14, size = 30, normalized size = 1.67 \begin {gather*} -1250 \left (\frac {1}{625} \log \left (e^x+x\right )-\frac {1}{625} \log \left (625+e^{3+x}+e^3 x\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.65, size = 21, normalized size = 1.17 \begin {gather*} 2 \, \log \left (x e^{3} + e^{\left (x + 3\right )} + 625\right ) - 2 \, \log \left (x + e^{x}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.21, size = 24, normalized size = 1.33 \begin {gather*} 2 \, \log \left (-x e^{3} - e^{\left (x + 3\right )} - 625\right ) - 2 \, \log \left (x + e^{x}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.11, size = 23, normalized size = 1.28
method | result | size |
norman | \(-2 \ln \left ({\mathrm e}^{x}+x \right )+2 \ln \left ({\mathrm e}^{x} {\mathrm e}^{3}+x \,{\mathrm e}^{3}+625\right )\) | \(23\) |
risch | \(2 \ln \left ({\mathrm e}^{x}+\left (x \,{\mathrm e}^{3}+625\right ) {\mathrm e}^{-3}\right )-2 \ln \left ({\mathrm e}^{x}+x \right )\) | \(24\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.40, size = 24, normalized size = 1.33 \begin {gather*} 2 \, \log \left ({\left (x e^{3} + e^{\left (x + 3\right )} + 625\right )} e^{\left (-3\right )}\right ) - 2 \, \log \left (x + e^{x}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.20, size = 19, normalized size = 1.06 \begin {gather*} 2\,\ln \left (x+625\,{\mathrm {e}}^{-3}+{\mathrm {e}}^x\right )-2\,\ln \left (x+{\mathrm {e}}^x\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.27, size = 27, normalized size = 1.50 \begin {gather*} - 2 \log {\left (x + e^{x} \right )} + 2 \log {\left (\frac {4 x e^{3} + 2500}{4 e^{3}} + e^{x} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________