Optimal. Leaf size=21 \[ -5+x^2 \left (e^x+4 x^2\right )+\log \left (e^x x\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.07, antiderivative size = 16, normalized size of antiderivative = 0.76, number of steps used = 11, number of rules used = 4, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.160, Rules used = {14, 2196, 2176, 2194} \begin {gather*} 4 x^4+e^x x^2+x+\log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 14
Rule 2176
Rule 2194
Rule 2196
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (e^x x (2+x)+\frac {1+x+16 x^4}{x}\right ) \, dx\\ &=\int e^x x (2+x) \, dx+\int \frac {1+x+16 x^4}{x} \, dx\\ &=\int \left (2 e^x x+e^x x^2\right ) \, dx+\int \left (1+\frac {1}{x}+16 x^3\right ) \, dx\\ &=x+4 x^4+\log (x)+2 \int e^x x \, dx+\int e^x x^2 \, dx\\ &=x+2 e^x x+e^x x^2+4 x^4+\log (x)-2 \int e^x \, dx-2 \int e^x x \, dx\\ &=-2 e^x+x+e^x x^2+4 x^4+\log (x)+2 \int e^x \, dx\\ &=x+e^x x^2+4 x^4+\log (x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 16, normalized size = 0.76 \begin {gather*} x+e^x x^2+4 x^4+\log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.63, size = 15, normalized size = 0.71 \begin {gather*} 4 \, x^{4} + x^{2} e^{x} + x + \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.12, size = 15, normalized size = 0.71 \begin {gather*} 4 \, x^{4} + x^{2} e^{x} + x + \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.02, size = 16, normalized size = 0.76
method | result | size |
default | \(x +\ln \relax (x )+{\mathrm e}^{x} x^{2}+4 x^{4}\) | \(16\) |
norman | \(x +\ln \relax (x )+{\mathrm e}^{x} x^{2}+4 x^{4}\) | \(16\) |
risch | \(x +\ln \relax (x )+{\mathrm e}^{x} x^{2}+4 x^{4}\) | \(16\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.36, size = 27, normalized size = 1.29 \begin {gather*} 4 \, x^{4} + {\left (x^{2} - 2 \, x + 2\right )} e^{x} + 2 \, {\left (x - 1\right )} e^{x} + x + \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.04, size = 15, normalized size = 0.71 \begin {gather*} x+\ln \relax (x)+x^2\,{\mathrm {e}}^x+4\,x^4 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.12, size = 15, normalized size = 0.71 \begin {gather*} 4 x^{4} + x^{2} e^{x} + x + \log {\relax (x )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________