Optimal. Leaf size=24 \[ \frac {12}{x (4+\log (x) (1+x-2 x (5+\log (5 x))))} \]
________________________________________________________________________________________
Rubi [F] time = 1.81, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-60+108 x+(-12+240 x) \log (x)+(24 x+48 x \log (x)) \log (5 x)}{16 x^2+\left (8 x^2-72 x^3\right ) \log (x)+\left (x^2-18 x^3+81 x^4\right ) \log ^2(x)+\left (-16 x^3 \log (x)+\left (-4 x^3+36 x^4\right ) \log ^2(x)\right ) \log (5 x)+4 x^4 \log ^2(x) \log ^2(5 x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {12 (-5+9 x+2 x \log (5 x)+\log (x) (-1+20 x+4 x \log (5 x)))}{x^2 (4-\log (x) (-1+9 x+2 x \log (5 x)))^2} \, dx\\ &=12 \int \frac {-5+9 x+2 x \log (5 x)+\log (x) (-1+20 x+4 x \log (5 x))}{x^2 (4-\log (x) (-1+9 x+2 x \log (5 x)))^2} \, dx\\ &=12 \int \left (\frac {4+4 \log (x)+\log ^2(x)+2 x \log ^2(x)}{x^2 \log (x) (-4-\log (x)+9 x \log (x)+2 x \log (x) \log (5 x))^2}+\frac {1+2 \log (x)}{x^2 \log (x) (-4-\log (x)+9 x \log (x)+2 x \log (x) \log (5 x))}\right ) \, dx\\ &=12 \int \frac {4+4 \log (x)+\log ^2(x)+2 x \log ^2(x)}{x^2 \log (x) (-4-\log (x)+9 x \log (x)+2 x \log (x) \log (5 x))^2} \, dx+12 \int \frac {1+2 \log (x)}{x^2 \log (x) (-4-\log (x)+9 x \log (x)+2 x \log (x) \log (5 x))} \, dx\\ &=12 \int \left (\frac {4}{x^2 (-4-\log (x)+9 x \log (x)+2 x \log (x) \log (5 x))^2}+\frac {4}{x^2 \log (x) (-4-\log (x)+9 x \log (x)+2 x \log (x) \log (5 x))^2}+\frac {\log (x)}{x^2 (-4-\log (x)+9 x \log (x)+2 x \log (x) \log (5 x))^2}+\frac {2 \log (x)}{x (-4-\log (x)+9 x \log (x)+2 x \log (x) \log (5 x))^2}\right ) \, dx+12 \int \left (\frac {2}{x^2 (-4-\log (x)+9 x \log (x)+2 x \log (x) \log (5 x))}+\frac {1}{x^2 \log (x) (-4-\log (x)+9 x \log (x)+2 x \log (x) \log (5 x))}\right ) \, dx\\ &=12 \int \frac {\log (x)}{x^2 (-4-\log (x)+9 x \log (x)+2 x \log (x) \log (5 x))^2} \, dx+12 \int \frac {1}{x^2 \log (x) (-4-\log (x)+9 x \log (x)+2 x \log (x) \log (5 x))} \, dx+24 \int \frac {\log (x)}{x (-4-\log (x)+9 x \log (x)+2 x \log (x) \log (5 x))^2} \, dx+24 \int \frac {1}{x^2 (-4-\log (x)+9 x \log (x)+2 x \log (x) \log (5 x))} \, dx+48 \int \frac {1}{x^2 (-4-\log (x)+9 x \log (x)+2 x \log (x) \log (5 x))^2} \, dx+48 \int \frac {1}{x^2 \log (x) (-4-\log (x)+9 x \log (x)+2 x \log (x) \log (5 x))^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.89, size = 24, normalized size = 1.00 \begin {gather*} -\frac {12}{x (-4+\log (x) (-1+9 x+2 x \log (5 x)))} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.67, size = 36, normalized size = 1.50 \begin {gather*} -\frac {12}{2 \, x^{2} \log \relax (x)^{2} + {\left (2 \, x^{2} \log \relax (5) + 9 \, x^{2} - x\right )} \log \relax (x) - 4 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.26, size = 38, normalized size = 1.58 \begin {gather*} -\frac {12}{2 \, x^{2} \log \relax (5) \log \relax (x) + 2 \, x^{2} \log \relax (x)^{2} + 9 \, x^{2} \log \relax (x) - x \log \relax (x) - 4 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.21, size = 39, normalized size = 1.62
method | result | size |
risch | \(-\frac {12 i}{x \left (2 i \ln \relax (5) x \ln \relax (x )+2 i x \ln \relax (x )^{2}+9 i x \ln \relax (x )-i \ln \relax (x )-4 i\right )}\) | \(39\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.48, size = 34, normalized size = 1.42 \begin {gather*} -\frac {12}{2 \, x^{2} \log \relax (x)^{2} + {\left (x^{2} {\left (2 \, \log \relax (5) + 9\right )} - x\right )} \log \relax (x) - 4 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.04 \begin {gather*} \int \frac {108\,x+\ln \relax (x)\,\left (240\,x-12\right )+\ln \left (5\,x\right )\,\left (24\,x+48\,x\,\ln \relax (x)\right )-60}{\ln \relax (x)\,\left (8\,x^2-72\,x^3\right )+{\ln \relax (x)}^2\,\left (81\,x^4-18\,x^3+x^2\right )-\ln \left (5\,x\right )\,\left (16\,x^3\,\ln \relax (x)+{\ln \relax (x)}^2\,\left (4\,x^3-36\,x^4\right )\right )+16\,x^2+4\,x^4\,{\ln \left (5\,x\right )}^2\,{\ln \relax (x)}^2} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.44, size = 34, normalized size = 1.42 \begin {gather*} - \frac {12}{2 x^{2} \log {\relax (x )}^{2} - 4 x + \left (2 x^{2} \log {\relax (5 )} + 9 x^{2} - x\right ) \log {\relax (x )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________